Global regularity of the 2D liquid crystal equations with weak velocity dissipation

被引:8
作者
Yu, Yanghai [1 ]
Wu, Xing [1 ]
Tang, Yanbin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
2D liquid crystal equations; Weak dissipation; Damping; Global regularity; EXISTENCE; CRITERION; EULER; MODEL; FLOW;
D O I
10.1016/j.camwa.2016.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an initial value problem for the two-dimensional liquid crystal equations. We establish the global regularity of solutions to the equations with a weak velocity dissipation and obtain the global smooth solutions to the 2D liquid crystal equations with damping for small initial data.(C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:920 / 933
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 1983, MONOGRAPHS MATH
[2]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[3]   Nonlinear maximum principles for dissipative linear nonlocal operators and applications [J].
Constantin, Peter ;
Vicol, Vlad .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (05) :1289-1321
[4]   Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals [J].
Coutand, D ;
Shkoller, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (10) :919-924
[5]  
Fan JS, 2011, HOUSTON J MATH, V37, P627
[6]   Higher order commutator estimates and local existence for the non-resistive MHD equations and related models [J].
Fefferman, Charles L. ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (04) :1035-1056
[7]  
Feireisl E, 2009, ADV MATH FLUID MECH, P1
[8]   Logarithmically improved regularity criterion for the nematic liquid crystal flows in (B) over dot∞,∞-1 space [J].
Gala, Sadek ;
Liu, Qiao ;
Ragusa, Maria Alessandra .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (11) :1738-1745
[9]   Higher regularity of global attractor for a damped Benjamin-Bona-Mahony equation on R [J].
Guo, Yantao ;
Wang, Ming ;
Tang, Yanbin .
APPLICABLE ANALYSIS, 2015, 94 (09) :1766-1783
[10]  
Jacob N, 2005, PSEUDO DIFFERENTIAL OPERATORS AND MARKOV PROCESSES, VOL III: MARKOV PROCESSES AND APPLICATIONS, P3, DOI 10.1142/9781860947155_0001