Mesh Adaptation for Stationary Flow Control

被引:21
作者
Becker, Roland [1 ]
机构
[1] Heidelberg Univ, Inst Angew Math, Neuenheimer Feld 294, D-69120 Heidelberg, Germany
关键词
Optimal control; flow control; finite elements; a posteriori error estimates; mesh adaptation; model reduction;
D O I
10.1007/PL00000974
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider local mesh adaptation for stationary flow control problems. The state equation is given by the incompressible Navier-Stokes equations with Neumann boundary control. As an example, the functional to be minimized is the drag coefficient of an immersed body. We use finite elements on locally refined meshes to discretize the first order necessary conditions based on the Lagrangian. An a posteriori error estimate is derived which is directly related to the control problem. It is used to successively enrich the finite element space until the computed solution satisfies prescribed accuracy requirements.
引用
收藏
页码:317 / 341
页数:25
相关论文
共 33 条
[1]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[2]  
[Anonymous], 2000, TRANSLATIONS MATH MO
[3]  
Babuska I., 1996, INT J NUMER METHODS, V34, P1111
[4]  
Babuska I., 1996, INT J NUMER METHODS, V34, P1085
[5]  
BECKER R, 1998, P ENUMATH 97 HEID SE
[6]  
Becker R., SIAM J CONT OPT
[7]  
Becker R., E W J NUMER MATH
[8]  
Becker R., ADAPTIVE FINIT UNPUB
[9]  
Becker R., 1996, E W J NUMER MATH, V4, P237
[10]  
Becker R., 2000, FDN COMPUTATIONAL MA, V99