Rainbow triangles and the Caccetta-Haggkvist conjecture

被引:18
作者
Aharoni, Ron [1 ]
DeVos, Matthew [2 ]
Holzman, Ron [1 ]
机构
[1] Technion, Dept Math, IL-32000 Haifa, Israel
[2] Simon Fraser Univ, Dept Math, Burnaby, BC, Canada
基金
以色列科学基金会;
关键词
Caccetta-Haggkvist; edge-colored graph; rainbow triangles; EDGE; DENSITY; GRAPHS;
D O I
10.1002/jgt.22457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A famous conjecture of Caccetta and Haggkvist is that in a digraph on n vertices and minimum outdegree at least n/r there is a directed cycle of length r or less. We consider the following generalization: in an undirected graph on n vertices, any collection of n disjoint sets of edges, each of size at least n/r, has a rainbow cycle of length r or less. We focus on the case r = 3 and prove the existence of a rainbow triangle under somewhat stronger conditions than in the conjecture. In our main result, whenever n is larger than a suitable polynomial in k, we determine the maximum number of edges in an n-vertex edge-colored graph where all color classes have size at most k and there is no rainbow triangle. Moreover, we characterize the extremal graphs for this problem.
引用
收藏
页码:347 / 360
页数:14
相关论文
共 22 条
  • [1] [Anonymous], 1959, Amer. Math. Monthly
  • [2] Bollobas B., 1975, P 5 BRIT COMB C, P79
  • [3] Counting subgraphs - A new approach to the Caccetta-Haggkvist conjecture
    Bondy, JA
    [J]. DISCRETE MATHEMATICS, 1997, 165 : 71 - 80
  • [4] Caccetta L., 1978, Congress. Numer., P181
  • [5] Erd\Hos P., 1975, Coll. Math. Soc. J. Bolyai, V10
  • [6] TRANSITIV ORIENTIERBARE GRAPHEN
    GALLAI, T
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2): : 25 - &
  • [7] Edge colorings of complete graphs without tricolored triangles
    Gyárfás, A
    Simonyi, G
    [J]. JOURNAL OF GRAPH THEORY, 2004, 46 (03) : 211 - 216
  • [8] Gallai colorings of non-complete graphs
    Gyarfas, Andras
    Sarkozy, Gabor N.
    [J]. DISCRETE MATHEMATICS, 2010, 310 (05) : 977 - 980
  • [9] Hamburger P, 2007, ELECTRON J COMB, V14
  • [10] COUNTING FLAGS IN TRIANGLE-FREE DIGRAPHS
    Hladky, Jan
    Kral', Daniel
    Norin, Sergey
    [J]. COMBINATORICA, 2017, 37 (01) : 49 - 76