Public risk perception and emotion on Twitter during the Covid-19 pandemic

被引:61
作者
Dyer, Joel [1 ,2 ]
Kolic, Blas [1 ,2 ]
机构
[1] Univ Oxford, Inst New Econ Thinking, Oxford Martin Sch, Oxford, England
[2] Univ Oxford, Math Inst, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
Risk perception; Twitter; Covid-19; Natural language processing; Psychophysics; Regression analysis; Linguistic networks; Network partitions; INSENSITIVITY; EXPECTATION;
D O I
10.1007/s41109-020-00334-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Successful navigation of the Covid-19 pandemic is predicated on public cooperation with safety measures and appropriate perception of risk, in which emotion and attention play important roles. Signatures of public emotion and attention are present in social media data, thus natural language analysis of this text enables near-to-real-time monitoring of indicators of public risk perception. We compare key epidemiological indicators of the progression of the pandemic with indicators of the public perception of the pandemic constructed from similar to 20 million unique Covid-19-related tweets from 12 countries posted between 10th March and 14th June 2020. We find evidence of psychophysical numbing:Twitter users increasingly fixate on mortality, but in a decreasingly emotional and increasingly analytic tone. Semantic network analysis based on word co-occurrences reveals changes in the emotional framing of Covid-19 casualties that are consistent with this hypothesis. We also find that the average attention afforded to national Covid-19 mortality rates is modelled accurately with the Weber-Fechner and power law functions of sensory perception. Our parameter estimates for these models are consistent with estimates from psychological experiments, and indicate that users in this dataset exhibit differential sensitivity by country to the national Covid-19 death rates. Our work illustrates the potential utility of social media for monitoring public risk perception and guiding public communication during crisis scenarios.
引用
收藏
页数:32
相关论文
共 69 条
[1]  
Aiello LM, 2020, ARXIV PREPRINT ARXIV
[2]  
[Anonymous], 2020, MAT 23 PRES 83 HER S
[3]  
[Anonymous], 2020, NEWS CONS UK 2020 RE
[4]  
[Anonymous], 2020, NBC NEWS MAY
[5]  
[Anonymous], 2020, FINANCIERO JUN
[6]  
[Anonymous], 1997, PSYCHOPHYSICS FUNDAM
[7]  
[Anonymous], 2015, POLICY INSIGHTS BEHA, DOI DOI 10.1177/2372732215600887
[8]  
[Anonymous], 2020, BBC NEWS ONLINE
[9]  
[Anonymous], 2020, EL DIARIO
[10]  
[Anonymous], 2016, P EMNLP 2016