共 50 条
Single Lipid Bilayers Constructed on Polymer Cushion Studied by Sum Frequency Generation Vibrational Spectroscopy
被引:44
|作者:
Wang, Ting
[1
,2
]
Li, Dawei
[2
,3
]
Lu, Xiaolin
[2
]
Khmaladze, Alexander
[2
]
Han, Xiaofeng
[2
]
Ye, Shuji
[2
]
Yang, Pei
[2
]
Xue, Gi
[3
]
He, Nongyue
[1
]
Chen, Zhan
[2
]
机构:
[1] Southeast Univ, State Key Lab Bioelect, Sch Biol Sci & Med Engn, Nanjing 210096, Peoples R China
[2] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[3] Nanjing Univ, State Key Lab Coordinat Chem, Nanjing Natl Lab Microstruct, Dept Polymer Sci & Engn,Sch Chem & Chem Engn, Nanjing 210093, Peoples R China
关键词:
IN-SITU;
ORIENTATION DETERMINATION;
BIOLOGICAL MOLECULES;
PHOSPHOLIPID-BILAYER;
SUPPORTED MEMBRANES;
STRUCTURAL-CHANGES;
FLIP-FLOP;
SURFACE;
WATER;
PROTEIN;
D O I:
10.1021/jp200546h
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Planar solid supported single lipid bilayers on mica, glass, or other inorganic surfaces have been widely used as models for cell membranes. To more closely mimic the cell membrane environments, soft hydrophilic polymer cushions were introduced between the hard inorganic substrate and the lipid bilayer to completely avoid the possible substrate-lipid interactions. In this Article, sum frequency generation (SFG) vibrational spectroscopy was used to examine and compare single lipid bilayers assembled on the CaF2 prism surface and on poly(L-lactic acid) (PLLA) cushion. By using asymmetric lipid bilayers composed of a hydrogenated 1,2-dipalmitoyl-sn-glycerol-3-phosphoglyceron (DPPG) leaflet and a deuterated 1,2-dipalmitoyl-(d62)-sn-glycerol-3-phosphoglycerol (d-DPPG) leaflet, it was shown that the DPPG lipid bilayers deposited on the CaF2 and PLLA surfaces have similar structures. SFG has also been applied to investigate molecular interactions between an antimicrobial peptide Cecropin P-1 (CP1) and the lipid bilayers on the above two different surfaces. Similar results were again obtained. This research demonstrated that the hydrophilic PLLA cushion can serve as an excellent substrate to support single lipid bilayers. We believe that it can be and important cell membrane model for future studies on transmembrane proteins for which the possible inorganic substrate-bilayer interactions may affect the protein structure or function.
引用
收藏
页码:7613 / 7620
页数:8
相关论文