Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution

被引:29
|
作者
Zhao, Peng [1 ]
Liu, Yongming [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85281 USA
基金
美国国家航空航天局;
关键词
Conflict resolution; deep reinforcement learning; air traffic management; SPACE-BASED ANALYSIS;
D O I
10.1109/TITS.2021.3077572
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A novel method for aircraft conflict resolution in air traffic management (ATM) using physics informed deep reinforcement learning (RL) is proposed. The motivation is to integrate prior physics understanding and model in the learning algorithm to facilitate the optimal policy searching and to present human-explainable results for display and decision-making. First, the information of intruders' quantity, speeds, heading angles, and positions are integrated into an image using the solution space diagram (SSD), which is used in the ATM for conflict detection and mitigation. The SSD serves as the prior physics knowledge from the ATM domain which is the input features for learning. A convolution neural network is used with the SSD images for the deep reinforcement learning. Next, an actor-critic network is constructed to learn conflict resolution policy. Several numerical examples are used to illustrate the proposed methodology. Both discrete and continuous RL are explored using the proposed concept of physics informed learning. A detailed comparison and discussion of the proposed algorithm and classical RL-based conflict resolution is given. The proposed approach is able to handle arbitrary number of intruders and also shows faster convergence behavior due to the encoded prior physics understanding. In addition, the learned optimal policy is also beneficial for proper display to support decision-making. Several major conclusions and future work are presented based on the current investigation.
引用
收藏
页码:8288 / 8301
页数:14
相关论文
共 50 条
  • [1] Graph Reinforcement Learning for Multi-Aircraft Conflict Resolution
    Li, Yumeng
    Zhang, Yunhe
    Guo, Tong
    Liu, Yu
    Lv, Yisheng
    Du, Wenbo
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (03): : 4529 - 4540
  • [2] CONFLICT RESOLUTION STRATEGY BASED ON DEEP REINFORCEMENT LEARNING FOR AIR TRAFFIC MANAGEMENT
    Sui, Dong
    Ma, Chenyu
    Dong, Jintao
    AVIATION, 2023, 27 (03) : 177 - 186
  • [3] Reinforcement Learning for Two-Aircraft Conflict Resolution in the Presence of Uncertainty
    Duc-Thinh Pham
    Ngoc Phu Tran
    Goh, Sim Kuan
    Alam, Sameer
    Vu Duong
    2019 IEEE - RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF), 2019, : 76 - 81
  • [4] Review of Deep Reinforcement Learning Approaches for Conflict Resolution in Air Traffic Control
    Wang, Zhuang
    Pan, Weijun
    Li, Hui
    Wang, Xuan
    Zuo, Qinghai
    AEROSPACE, 2022, 9 (06)
  • [5] Enhancing air traffic control: A transparent deep reinforcement learning framework for autonomous conflict resolution
    Wang, Lei
    Yang, Hongyu
    Lin, Yi
    Yin, Suwan
    Wu, Yuankai
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 260
  • [6] Deep reinforcement learning based conflict detection and resolution in air traffic control
    Wang, Zhuang
    Li, Hui
    Wang, Junfeng
    Shen, Feng
    IET INTELLIGENT TRANSPORT SYSTEMS, 2019, 13 (06) : 1041 - 1047
  • [7] Aircraft Control Method Based on Deep Reinforcement Learning
    Zhen, Yan
    Hao, Mingrui
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 912 - 917
  • [8] Aircraft Conflict Resolution: A Benchmark Generator
    Pelegnn, Mercedes
    Cerulli, Martina
    INFORMS JOURNAL ON COMPUTING, 2023, 35 (02) : 274 - 285
  • [9] Transient Voltage Control Based on Physics-Informed Reinforcement Learning
    Gao, Jiemai
    Chen, Siyuan
    Li, Xiang
    Zhang, Jun
    IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2022, 6 : 905 - 910
  • [10] An Aircraft Collision Avoidance Method Based on Deep Reinforcement Learning
    Liu, Zuocheng
    Neretin, Evgeny
    Gao, Xiaoguang
    Wan, Kaifang
    2024 9TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING, ICCRE 2024, 2024, : 241 - 246