On a certain semiclassical problem on Wiener spaces

被引:2
作者
Aida, S [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Math Sci, Toyonaka, Osaka 5608531, Japan
关键词
D O I
10.2977/prims/1145476107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study asymptotic behavior of the spectrum of a Schrodinger type operator L-V(lambda) = L - lambda(2)V on the Wiener space as lambda --> infinity. Here L denotes the Ornstein-Uhlenbeck operator and V is a nonnegative potential function which has finitely many zero points. For some classes of potential functions, we determine the divergence order of the lowest eigenvalue. Also tunneling effect is studied.
引用
收藏
页码:365 / 392
页数:28
相关论文
共 36 条
[1]  
AGMON S, 1982, BOUNDS EIGENFUCTIONS
[2]  
AGMON S, 1975, ANN SCUOLA NORM SUP, V2, P152
[3]   An estimate of the gap of spectrum of Schrodinger operators which generate hyperbounded semigroups [J].
Aida, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 185 (02) :474-526
[4]   Uniform positivity improving property, Sobolev inequalities, and spectral gaps [J].
Aida, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (01) :152-185
[5]  
AIDA S, IN PRESS J FUNCT ANA
[6]  
Aida S., 1996, P 5 GREG S STOCH AN, P1
[7]  
AIDA S, IN PRESS PROBABILIT
[8]  
[Anonymous], LECT NOTES MATH
[9]  
[Anonymous], 1998, GAUSSIAN MEASURES
[10]  
[Anonymous], ANN I H POINCARE