High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective

被引:32
作者
Wills, Alfie G. [1 ,2 ]
Charvet, Sylvain [3 ]
Battilocchio, Claudio [4 ]
Scarborough, Christopher C. [4 ]
Wheelhouse, Katherine M. P. [5 ]
Poole, Darren L. [1 ]
Carson, Nessa [6 ]
Vantourout, Julien C. [3 ]
机构
[1] GlaxoSmithKline, Med Chem, Stevenage SG1 2NY, Herts, England
[2] Univ Strathclyde, Dept Pure & Appl Chem, Glasgow G1 1XL, Lanark, Scotland
[3] Univ Lyon 1, ICBMS, Univ Lyon, INSA,CPE Lyon,UMR 5246,CNRS, Batiment LEDERER, F-69622 Villeurbanne, France
[4] Syngenta Crop Protect, Res Chem, CH-4332 Stein, Switzerland
[5] GlaxoSmithKline, Chem Dev, Stevenage SG1 2NY, Herts, England
[6] Syngenta Jealotts Hill Int Res Ctr, Bracknell RG42 6EY, Berks, England
基金
英国工程与自然科学研究理事会;
关键词
electrochemistry; high-throughput; technology; method development; BUILDING ADDRESSABLE LIBRARIES; COMBINATORIAL MICRO ELECTROCHEMISTRY; IONIZATION MASS-SPECTROMETRY; SCREEN-PRINTED ELECTRODES; CHEMISTRY RESEARCH AREAS; DRUG DISCOVERY; FLOW CELL; ELECTROSYNTHESIS; ELECTROSPRAY; ELECTROLYSIS;
D O I
10.1021/acs.oprd.1c00167
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrochemical transformations involve complex parameter interactions, ranging from universal chemistry variables such as solvent and reagents to specialist factors including electrode material and current density. Hence, the development of a robust and scale-independent electrochemical reaction can currently be a challenge. High-throughput experimentation (HTE) is an enabling method for reaction optimization and robustness testing. Here we provide an industrial and academic perspective on the state of the art of the combination of HTE with electrochemical reaction optimization for applications, including scale-up. We then present our vision for a future in which HTE reduces barriers to wide adoption of electrochemistry across the field of chemical synthesis.
引用
收藏
页码:2587 / 2600
页数:14
相关论文
共 127 条
  • [21] CARSON N, 2020, ACS MED CHEM LETT, V26, P3194, DOI DOI 10.1002/CHEM.202000656
  • [22] Collins KD, 2013, NAT CHEM, V5, P597, DOI [10.1038/nchem.1669, 10.1038/NCHEM.1669]
  • [23] Key green chemistry research areas - a perspective from pharmaceutical manufacturers
    Constable, David J. C.
    Dunn, Peter J.
    Hayler, John D.
    Humphrey, Guy R.
    Leazer, Johnnie L., Jr.
    Linderman, Russell J.
    Lorenz, Kurt
    Manley, Julie
    Pearlman, Bruce A.
    Wells, Andrew
    Zaks, Aleksey
    Zhang, Tony Y.
    [J]. GREEN CHEMISTRY, 2007, 9 (05) : 411 - 420
  • [24] de la Mora JF, 2000, J MASS SPECTROM, V35, P939
  • [25] de Vries JG, 2003, EUR J ORG CHEM, V2003, P799
  • [26] DEGNER D, 1988, TOP CURR CHEM, V148, P1
  • [27] Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations
    Dong, Xichang
    Roeckl, Johannes L.
    Waldvogel, Siegfried R.
    Morandi, Bill
    [J]. SCIENCE, 2021, 371 (6528) : 507 - +
  • [28] A High-Throughput Extraction and Analysis Method for Steroidal Glycoalkaloids in Tomato
    Dzakovich, Michael P.
    Hartman, Jordan L.
    Cooperstone, Jessica L.
    [J]. FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [29] Electrochemical Deoxygenation of Aromatic Amides and Sulfoxides
    Edinger, Carolin
    Waldvogel, Siegfried R.
    [J]. EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2014, 2014 (24) : 5144 - 5148
  • [30] Stabilizing Lead Cathodes with Diammonium Salt Additives in the Deoxygenation of Aromatic Amides
    Edinger, Carolin
    Grimaudo, Valentine
    Broekmann, Peter
    Waldvogel, Siegfried R.
    [J]. CHEMELECTROCHEM, 2014, 1 (06): : 1018 - 1022