Nuclear magnetic resonance surface relaxation mechanisms of kerogen

被引:14
作者
Zhang, Boyang [1 ]
Daigle, Hugh [1 ]
机构
[1] Univ Texas Austin, Dept Petr & Geosyst Engn, Austin, TX 78712 USA
关键词
SYSTEMS; OIL; MARCELLUS; CRACKING; SHALES; ROCK;
D O I
10.1190/GEO2016-0350.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Nuclear magnetic resonance (NMR) relaxometry is an excellent tool for probing the interactions between solid pore surface and pore fluids in porous media. Surface relaxation is a key component of NMR relaxation. It is well-known that in conventional rocks, paramagnetic centers contribute most to the surface relaxation phenomenon. However, the interactions between organic pore surfaces and pore fluids, and the mechanism of surface relaxation in organic shale pores, are not well-understood. We tackle the issue using deuterated compounds to adjust the proton density in the liquid phase and monitoring the transverse relaxation rate changes of kerogen-fluid mixtures. With the Barnett and Eagle Ford kerogen isolates, we found that for alkanes, it is intramolecular dipolar coupling that dominates among the magnetic interactions. As a result, the transverse relaxation rate of alkane proton spins is more likely to be dependent on the concentration of active adsorption sites on the kerogen surface, rather than the kerogen proton density. For water inside organic pores, surface relaxation most likely originates from hydrogen bonding and intermolecular dipolar coupling. We also examined the temperature effect on kerogen surface relaxation and found temperature-dependent behavior that is consistent with surface relaxation by hydrogen bonding and homonuclear dipolar coupling interactions.
引用
收藏
页码:JM15 / JM22
页数:8
相关论文
共 36 条
[1]  
Al-Mahrooqi S. H., 2005, SOC COR AN
[2]  
[Anonymous], [No title captured]
[3]   EXPERIMENTAL SIMULATION IN A CONFINED SYSTEM AND KINETIC MODELING OF KEROGEN AND OIL CRACKING [J].
BEHAR, F ;
KRESSMANN, S ;
RUDKIEWICZ, JL ;
VANDENBROUCKE, M .
ORGANIC GEOCHEMISTRY, 1992, 19 (1-3) :173-189
[4]   Thermal cracking of kerogen in open and closed systems: Determination of kinetic parameters and stoichiometric coefficients for oil and gas generation [J].
Behar, F ;
Vandenbroucke, M ;
Tang, Y ;
Marquis, F ;
Espitalie, J .
ORGANIC GEOCHEMISTRY, 1997, 26 (5-6) :321-339
[5]   Effective wettability of minerals exposed to crude oil [J].
Buckley, JS .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2001, 6 (03) :191-196
[6]   Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units [J].
Chalmers, Gareth R. ;
Bustin, R. Marc ;
Power, Ian M. .
AAPG BULLETIN, 2012, 96 (06) :1099-1119
[7]  
Chen J. H., 2013, SPE MIDDL E OIL GAS
[8]  
Chen JM, 2012, SPRINGERBRIEF COMPUT, P53
[9]  
Coates G.R., 1999, NMR Logging Principles and Applications
[10]   Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging [J].
Curtis, Mark E. ;
Sondergeld, Carl H. ;
Ambrose, Raymond J. ;
Rai, Chandra S. .
AAPG BULLETIN, 2012, 96 (04) :665-677