Relative singularity categories and Gorenstein-projective modules

被引:42
作者
Chen, Xiao-Wu [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
基金
中国博士后科学基金;
关键词
CONTRAVARIANTLY FINITE SUBCATEGORIES; HOMOTOPY CATEGORY; COMPLEXES; PAIRS;
D O I
10.1002/mana.200810017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of relative singularity category with respect to a self-orthogonal subcategory omega of an abelian category. We introduce the Frobenius category of omega-Cohen-Macaulay objects, and under certain conditions, we show that the stable category of omega-Cohen-Macaulay objects is triangle-equivalent to the relative singularity category. As applications, we rediscover theorems by Buchweitz, Happel and Beligiannis, which relate the stable categories of (unnecessarily finitely-generated) Gorenstein-projective modules to the (big) singularity categories of rings. For the case where omega is the additive closure of a self-orthogonal object, we relate the category of omega-Cohen-Macaulay objects to the category of Gorenstein-projective modules over the opposite endomorphism ring of the self-orthogonal object. We prove that for a Gorenstein ring, the stable category of Gorenstein-projective modules is compactly generated and its compact objects coincide with finitely-generated Gorenstein-projective modules up to direct summand.(C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:199 / 212
页数:14
相关论文
共 28 条
[1]  
[Anonymous], MAXIMAL COHEN UNPUB
[2]  
[Anonymous], 1988, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras. London Mathematical Society Lecture Notes Series
[3]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[4]  
Auslander M., 1989, C P SAM ORS 21 22 MA, V38, P5, DOI [10.24033/msmf.339, DOI 10.24033/MSMF.339]
[5]  
Auslander M., 1971, LECT NOTES QUEEN MAR
[6]  
Auslander M., 1995, REPRESENTATION THEOR, DOI [10.1017/CBO9780511623608, DOI 10.1017/CBO9780511623608]
[7]   The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (CO-)stabilization [J].
Beligiannis, A .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (10) :4547-4596
[8]   Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras [J].
Beligiannis, A .
JOURNAL OF ALGEBRA, 2005, 288 (01) :137-211
[9]  
Beligiannis A, 2001, MATH SCAND, V89, P5
[10]  
BELIGIANNIS A, 2007, HOMOLOGICAL HOMOTOPI, V883