Multi-Omics Analysis Identifies MGA as a Negative Regulator of the MYC Pathway in Lung Adenocarcinoma

被引:30
|
作者
Llabata, Paula [1 ]
Mitsuishi, Yoichiro [2 ,3 ]
Choi, Peter S. [2 ,3 ]
Cai, Diana [2 ,3 ,4 ]
Francis, Joshua M. [2 ,3 ]
Torres-Diz, Manuel [1 ]
Udeshi, Namrata D. [3 ]
Golomb, Lior [2 ,3 ]
Wu, Zhong [2 ,3 ]
Zhou, Jin [2 ,3 ]
Svinkina, Tanya [3 ]
Aguilera-Jimenez, Estrella [5 ]
Liu, Yanli [5 ]
Carr, Steven A. [3 ]
Sanchez-Cespedes, Montse [1 ]
Meyerson, Matthew [2 ,3 ,4 ]
Zhang, Xiaoyang [5 ]
机构
[1] Canc Epigenet & Biol Program PEBC IDIBELL, Barcelona, Spain
[2] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[3] Broad Inst Harvard & MIT, Canc Program, Cambridge, MA 02142 USA
[4] Harvard Med Sch, Dept Pathol, Boston, MA 02115 USA
[5] Univ Utah, Huntsman Canc Inst, Dept Oncol Sci, Salt Lake City, UT USA
关键词
POLYCOMB GROUP PROTEIN; C-MYC; TRANSCRIPTIONAL ACTIVATION; MAX INACTIVATION; CELL LINE; RNA-SEQ; CANCER; GENES; COMPLEX; TARGET;
D O I
10.1158/1541-7786.MCR-19-0657
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Genomic analysis of lung adenocarcinomas has revealed that the MGA gene, which encodes a heterodimeric partner of the MYC-interacting protein MAX, is significantly mutated or deleted in lung adenocarcinomas. Most of the mutations are loss of function for MGA, suggesting that MGA may act as a tumor suppressor. Here, we characterize both the molecular and cellular role of MGA in lung adenocarcinomas and illustrate its functional relevance in the MYC pathway. Although MGA and MYC interact with the same binding partner, MAX, and recognize the same E-box DNA motif, we show that the molecular function of MGA appears to be antagonistic to that of MYC. Using mass spectrometry-based affinity proteomics, we demonstrate that MGA interacts with a noncanonical PCGF6-PRC1 complex containing MAX and E2F6 that is involved in gene repression, while MYC is not part of this MGA complex, in agreement with previous studies describing the interactomes of E2F6 and PCGF6. Chromatin immunoprecipitation-sequencing and RNA sequencing assays show that MGA binds to and represses genes that are bound and activated by MYC. In addition, we show that, as opposed to the MYC oncoprotein, MGA acts as a negative regulator for cancer cell proliferation. Our study defines a novel MYC/MAX/MGA pathway, in which MYC and MGA play opposite roles in protein interaction, transcriptional regulation, and cellular proliferation.
引用
收藏
页码:574 / 584
页数:11
相关论文
共 50 条
  • [1] MGA Suppresses the MYC Pathway in Lung Adenocarcinoma
    Llabata, P.
    Mitsuishi, Y.
    Choi, P.
    Torres-Diz, M.
    Cai, D.
    Zhang, X.
    Sanchez-Cespedes, M.
    Meyerson, M.
    JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (11) : S2268 - S2269
  • [2] Multi-omics analysis identifies potential mechanisms of AURKB in mediating poor outcome of lung adenocarcinoma
    Huang, Jie
    Zhang, Qianyun
    Shen, Juan
    Chen, Xueqin
    Ma, Shenglin
    AGING-US, 2021, 13 (04): : 5946 - 5966
  • [3] Multi-omics analysis of Japanese lung adenocarcinoma including mitochondria omics data
    Asada, Ken
    Bolatkan, Amina
    Shiraishi, Kouya
    Horinouchi, Hidehito
    Yoshida, Yukihiro
    Mukai, Masami
    Yatabe, Yasushi
    Kohno, Takashi
    Hamamoto, Ryuji
    CANCER SCIENCE, 2025, 116 : 106 - 106
  • [4] Integrated multi-omics analysis for lung adenocarcinoma in Xuanwei, China
    Jiang, Boyi
    Yang, Jiapeng
    He, Rui
    Wang, Dong
    Huang, Yunchao
    Zhao, Guangqiang
    Ning, Mingjie
    Zeng, Teng
    Li, Guangjian
    AGING-US, 2023, 15 (23): : 14263 - 14291
  • [5] Comprehensive multi-omics analysis identifies NUSAP1 as a potential prognostic and immunotherapeutic marker for lung adenocarcinoma
    Ma, Jun
    Zhu, Wenjing
    Wang, Yuan
    Du, Hongmei
    Ma, Ling
    Liu, Lisha
    Niu, Chao
    Zhang, Kai
    Yuan, Enwu
    Li, Songlei
    INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2025, 22 (02): : 328 - 340
  • [6] Multi-omics analysis of molecular landscape and heterogeneity in fetal adenocarcinoma of the lung
    Guo, Wei
    Sun, Li
    Chen, Xiaoxi
    Zhou, Haitao
    Yan, Shi
    Zhao, Gang
    Tang, Haimeng
    Bao, Hua
    Wu, Xue
    Shao, Yang
    Lin, Lin
    CANCER RESEARCH, 2023, 83 (07)
  • [7] Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication
    Lee, Tzong-Yi
    Huang, Kai-Yao
    Chuang, Cheng-Hsiang
    Lee, Cheng-Yang
    Chang, Tzu-Hao
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 87 (87)
  • [8] Multi-omics analysis of a novel prognostic gene signature linked to amino acid metabolism pathway in lung adenocarcinoma
    Xiang, Huihui
    Sasada, Tetsuro
    Miyagi, Yohei
    CANCER SCIENCE, 2023, 114 : 632 - 632
  • [9] Identification of Epigenetic Biomarkers of Lung Adenocarcinoma through Multi-Omics Data Analysis
    Kikutake, Chie
    Yahara, Koji
    PLOS ONE, 2016, 11 (04):
  • [10] Multi-omics analysis of a novel prognostic gene signature linked to amino acid metabolism pathway in lung adenocarcinoma
    Xiang, Huihui
    Kasajima, Rika
    Sasada, Tetsuro
    Miyagi, Yohei
    CANCER SCIENCE, 2023, 114 : 280 - 280