Persistence of Lagrange invariant tori at tangent degeneracy

被引:5
作者
Qian, Weichao [1 ,2 ]
Li, Yong [1 ,2 ,3 ]
Yang, Xue [1 ,2 ,3 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
[3] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
KAM theory; Hamiltonian system; Tangent degeneracy; Lagrange equilibrium position L2; LOWER-DIMENSIONAL TORI; HAMILTONIAN-SYSTEMS; PERIODIC-SOLUTIONS; ARNOLDS THEOREM; KAM TORI; STABILITY; PERTURBATIONS;
D O I
10.1016/j.jde.2019.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, without Riissmann's nondegenderate condition we show the persistence of KAM invariant tori. Using this theorem we obtain the persistence of invariant tori for degenerate systems rising from restricted three-body problems, especially, for Lagrange equilibrium position L2 with certain degeneracy. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:5078 / 5112
页数:35
相关论文
共 56 条
[41]   From the restricted to the full three-body problem [J].
Meyer, KR ;
Schmidt, DS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (05) :2283-2299
[42]   CONVERGENT SERIES EXPANSIONS FOR QUASI-PERIODIC MOTIONS [J].
MOSER, J .
MATHEMATISCHE ANNALEN, 1967, 169 (01) :136-&
[43]  
Moser J., 1962, NACHRICHTEN AKADEMIE, VII, P1
[44]   Periodic Solutions and KAM Tori in a Triaxial Potential [J].
Palacian, J. F. ;
Vidal, C. ;
Vidarte, J. ;
Yanguas, P. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (01) :159-187
[45]   ON ELLIPTIC LOWER DIMENSIONAL TORI IN HAMILTONIAN-SYSTEMS [J].
POSCHEL, J .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (04) :559-608
[46]   INTEGRABILITY OF HAMILTONIAN-SYSTEMS ON CANTOR SETS [J].
POSCHEL, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (05) :653-696
[47]  
Poschel J., 1996, ANN SCUOLA NORM-SCI, V23, P119
[48]   Multiscale KAM theorem for Hamiltonian systems [J].
Qian, Weichao ;
Li, Yong ;
Yang, Xue .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) :70-86
[49]   INVARIANT TORI IN NON-DEGENERATE NEARLY INTEGRABLE HAMILTONIAN SYSTEMS [J].
Ruessmann, H. .
REGULAR & CHAOTIC DYNAMICS, 2001, 6 (02) :119-204
[50]   NON-DEGENERACY IN THE PERTURBATION-THEORY OF INTEGRABLE DYNAMIC-SYSTEMS [J].
RUSSMANN, H .
NUMBER THEORY AND DYNAMICAL SYSTEMS, 1989, 134 :5-18