Interpretable Machine Learning Structure for an Early Prediction of Lane Changes

被引:6
作者
Gallitz, Oliver [1 ]
De Candido, Oliver [2 ]
Botsch, Michael [1 ]
Melz, Ron [3 ]
Utschick, Wolfgang [2 ]
机构
[1] TH Ingolstadt, D-85049 Ingolstadt, Germany
[2] Tech Univ Munich, D-80333 Munich, Germany
[3] Audi AG, D-85049 Ingolstadt, Germany
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I | 2020年 / 12396卷
关键词
Interpretability; Early prediction; Autonomous driving; EARLY CLASSIFICATION; MIXTURE;
D O I
10.1007/978-3-030-61609-0_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interpretable machine learning structure for the task of lane change intention prediction, based on multivariate time series data. A Mixture-of-Experts architecture is adapted to simultaneously predict lane change directions and the time-to-lane-change. To facilitate reproducibility, the approach is demonstrated on a publicly available dataset of German highway scenarios. Recurrent networks for time series classification using Gated Recurrent Units and Long-Short-Term Memory cells, as well as convolution neural networks serve as comparison references. The interpretability of the results is shown by extracting the rule sets of the underlying classification and regression trees, which are grown using data-adaptive interpretable features. The proposed method outperforms the reference methods in false alarm behavior while displaying a state-of-the-art early detection performance.
引用
收藏
页码:337 / 349
页数:13
相关论文
共 25 条
[1]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[2]   Variational Bayesian mixture of experts models and sensitivity analysis for nonlinear dynamical systems [J].
Baldacchino, Tara ;
Cross, Elizabeth J. ;
Worden, Keith ;
Rowson, Jennifer .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 66-67 :178-200
[3]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[4]  
Dang HQ, 2017, IEEE INT C INTELL TR
[5]   A mixture of multilayer perceptron experts network for modeling face/nonface recognition in cortical face processing regions [J].
Ebrahimpour, Reza ;
Kabir, Ehsanollah ;
Esteky, Hossein ;
Yousefi, Mohammad Reza .
INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2008, 14 (02) :151-162
[6]  
Gallitz O, 2019, IEEE INT C INTELL TR, P3405, DOI 10.1109/ITSC.2019.8917524
[7]   Early classification of multivariate temporal observations by extraction of interpretable shapelets [J].
Ghalwash, Mohamed F. ;
Obradovic, Zoran .
BMC BIOINFORMATICS, 2012, 13
[8]   A Survey of Methods for Explaining Black Box Models [J].
Guidotti, Riccardo ;
Monreale, Anna ;
Ruggieri, Salvatore ;
Turin, Franco ;
Giannotti, Fosca ;
Pedreschi, Dino .
ACM COMPUTING SURVEYS, 2019, 51 (05)
[9]  
Gulcehre C., 2014, PROC C EMPIRICAL MET, P1724
[10]  
Gunning D., 2017, Def. Adv. Res. Proj. Agency, V2, P1