Drag and heat reduction mechanism in the combinational opposing jet and acoustic cavity concept for hypersonic vehicles

被引:104
|
作者
Huang, Wei [1 ]
Yan, Li [1 ]
Liu, Jun [1 ]
Jin, Liang [1 ]
Tan, Jian-guo [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Scramjet Lab, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypersonic vehicle; Drag reduction; Heat release reduction; Opposing jet; Acoustic cavity; Supersonic flow; THERMAL PROTECTION SYSTEM; MULTIOBJECTIVE DESIGN OPTIMIZATION; SUPERSONIC-FLOW; SCRAMJET COMBUSTOR; BLUNT-BODY;
D O I
10.1016/j.ast.2015.01.029
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The drag and heat flux reduction mechanism in the hypersonic vehicle has attracted an increasing attention worldwide. In the current study, the two-dimensional axisymmetric Reynolds-averaged Navier- Stokes (RANS) equations and the two equation standard k-epsilon turbulence model have been utilized to obtain the flow field properties around the hypersonic blunt body, and the combinational opposing jet and acoustic cavity concept has been employed to induce the drag and heat reduction. The numerical method has been validated against the available experimental data in the open literature, and the effects of the wall temperature and Prandtl number on the predicted results have been analyzed, as well as the grid independency analysis. At last, the influences of the cavity location, the length-to-depth ratio of the cavity and the molecular weight of the injectant on the flow field properties have been investigated. The obtained results show that the shock wave stand-off distance has been overestimated, and the locations of the Mach disk and the triple point have been captured accurately. However, the predicted Stanton number is 48.5% less than the experimental data, and its variable trend is the same as that of the experiment. The area of the recirculation zone generated in the vicinity of the Mach disk has a great impact on the drag force reduction, and the injectant with smaller molecular weight can induce more heat flux reduction in the range considered in the current study. The acoustic cavity should not be located in the middle of the jet nozzle in order to obtain the smaller drag force and heat flux, and the cavity with its length-to-depth ratio being even number is beneficial to the drag and heat reduction in the range considered. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:407 / 414
页数:8
相关论文
共 50 条
  • [1] Drag and heat reduction mechanism induced by a combinational novel cavity and counterflowing jet concept in hypersonic flows
    Sun, Xi-wan
    Guo, Zhen-yun
    Huang, Wei
    Li, Shi-bin
    Yan, Li
    ACTA ASTRONAUTICA, 2016, 126 : 109 - 119
  • [2] A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows
    Sun, Xi-wan
    Guo, Zhen-yun
    Huang, Wei
    Li, Shi-bin
    Yan, Li
    ACTA ASTRONAUTICA, 2017, 131 : 204 - 225
  • [3] DRAG AND HEAT REDUCTION MECHANISM OF THE POROUS OPPOSING JET FOR VARIABLE BLUNT HYPERSONIC VEHICLES
    Li, Shibin
    Huang, Wei
    Wang, Zhenguo
    Yan, Li
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 5B, 2018,
  • [4] Drag and heat reduction mechanism of the porous opposing jet for variable blunt hypersonic vehicles
    Li, Shibin
    Huang, Wei
    Lei, Jing
    Wang, Zhenguo
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 1087 - 1098
  • [5] Heat flux reduction mechanism induced by a combinational opposing jet and cavity concept in supersonic flows
    Huang, Wei
    Jiang, Yan-ping
    Yan, Li
    Liu, Jun
    ACTA ASTRONAUTICA, 2016, 121 : 164 - 171
  • [6] Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows
    Ou, Min
    Yan, Li
    Huang, Wei
    Li, Shi-bin
    Li, Lang-quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 10 - 31
  • [7] Drag reduction mechanism induced by a combinational opposing jet and spike concept in supersonic flows
    Huang, Wei
    Liu, Jun
    Xia, Zhi-xun
    ACTA ASTRONAUTICA, 2015, 115 : 24 - 31
  • [8] Novel Combinational Aerodisk and Lateral Jet Concept for Drag and Heat Reduction in Hypersonic Flows
    Zhu, Liang
    Li, Yingkun
    Chen, Xiong
    Gong, Lunkun
    Xu, Jinsheng
    Feng, Zirui
    JOURNAL OF AEROSPACE ENGINEERING, 2019, 32 (01)
  • [9] Parameter study on drag and heat reduction of a novel combinational spiked blunt body and rear opposing jet concept in hypersonic flows
    Huang, Jie
    Yao, Wei-Xing
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 150
  • [10] Multiobjective Design Optimization of Hypersonic Combinational Novel Cavity and Opposing Jet Concept
    Sun, Xi-wan
    Huang, Wei
    Guo, Zhen-yun
    Yan, Li
    JOURNAL OF SPACECRAFT AND ROCKETS, 2017, 54 (03) : 662 - 671