Measures of non-Markovianity: Divisibility versus backflow of information

被引:224
作者
Chruscinski, Dariusz [1 ]
Kossakowski, Andrzej [1 ]
Rivas, Angel [2 ,3 ]
机构
[1] Nicholas Copernicus Univ, Inst Phys, PL-87100 Torun, Poland
[2] Univ Complutense, Fac Ciencias Fis, Dept Fis Teor 1, E-28040 Madrid, Spain
[3] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 05期
关键词
DYNAMICAL SEMIGROUPS; MASTER-EQUATIONS; QUANTUM; ENTANGLEMENT; GENERATORS;
D O I
10.1103/PhysRevA.83.052128
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze two recently proposed measures of non-Markovianity: one based on the concept of divisibility of the dynamical map and the other one based on distinguishability of quantum states. We provide a model to show that these two measures need not agree. In addition, we discuss possible generalizations and intricate relations between these measures.
引用
收藏
页数:6
相关论文
共 39 条
  • [31] Entanglement and Non-Markovianity of Quantum Evolutions
    Rivas, Angel
    Huelga, Susana F.
    Plenio, Martin B.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (05)
  • [32] Completely positive post-Markovian master equation via a measurement approach
    Shabani, A
    Lidar, DA
    [J]. PHYSICAL REVIEW A, 2005, 71 (02):
  • [33] Weiss U., 2000, Quantum Dissipative Systems
  • [34] Positivity preserving non-Markovian master equations
    Wilkie, J
    [J]. PHYSICAL REVIEW E, 2000, 62 (06) : 8808 - 8810
  • [35] Sufficient conditions for positivity of non-Markovian master equations with Hermitian generators
    Wilkie, Joshua
    Wong, Yin Mei
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (01)
  • [36] Dividing quantum channels
    Wolf, Michael M.
    Cirac, J. Ignacio
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) : 147 - 168
  • [37] Quantum open system theory: Bipartite aspects
    Yu, T.
    Eberly, J. H.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (14)
  • [38] Sudden death of entanglement: Classical noise effects
    Yu, T.
    Eberly, J. H.
    [J]. OPTICS COMMUNICATIONS, 2006, 264 (02) : 393 - 397
  • [39] Yu T, 2007, QUANTUM INF COMPUT, V7, P459