共 34 条
Efficient adsorption of dibutyl phthalate from aqueous solution by activated carbon developed from phoenix leaves
被引:35
作者:
Wang, Z.
[1
]
机构:
[1] Nanjing Forestry Univ, Sch Civil Engn, Nanjing 210037, Jiangsu, Peoples R China
关键词:
Adsorption;
Dibutyl phthalate;
Phoenix leaves activated carbon;
Isotherm;
Kinetic model;
Thermodynamic study;
N-BUTYL PHTHALATE;
WATER-TREATMENT;
METHYLENE-BLUE;
REMOVAL;
DEGRADATION;
ESTERS;
EQUILIBRIUM;
OZONATION;
LANDFILL;
WASTE;
D O I:
10.1007/s13762-014-0554-7
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
The adsorption of dibutyl phthalate (DBP) from aqueous solution using phoenix leaves activated carbon (PLAC) by chemical activation with phosphate was investigated. After scanning electron microscopy, energy dispersive X-ray spectrometry, Brunauer-Emmett-Teller (BET) and infrared spectrum characterization of PLAC, the influences of solution pH, contact time, initial DBP concentration and temperature on the adsorption rate were investigated. The isotherm, kinetic and thermodynamic parameters were explored to describe the experimental data. The PLAC has a heterogeneous distribution of grain and a well-developed porous structure. The main elements of PLAC are 24.26 % carbon, 70.65 % oxygen and 3.75 % phosphor. The BET surface area of the sample is 593.52 m(2)/g with the average pore diameter of 6.31 nm. The single-point total pore volume was found to be 0.52 cm(3)/g. The infrared spectrum showed the complexity of the material. The maximum DBP adsorption rate was 97.36 %, and the maximum adsorption capacity was 48.68 mg/g at pH 13. The monolayer sorption capacity of the biosorbent for DBP was found as 133.33 mg/g with the Langmuir isotherm. The equilibrium data fitted with Freundlich isotherm better than Langmuir, Dubinin-Radushkevich and Temkin isotherm. The kinetic data were best described by the pseudo-second-order model better than pseudo-first-order kinetic, intraparticle diffusion, and Elovich model. The thermodynamic studies indicated that the sorption process spontaneous, thermodynamically favorable and endothermic. The PLAC can be an alternative material for treatment of DBP wastewater.
引用
收藏
页码:1923 / 1932
页数:10
相关论文