Rates in almost sure invariance principle for quickly mixing dynamical systems

被引:11
作者
Cuny, C. [1 ]
Dedecker, J. [2 ]
Korepanov, A. [3 ]
Merlevede, F. [4 ]
机构
[1] Univ Brest, LMBA, UMR 6205, CNRS, Brest, France
[2] Univ Paris 05, Sorbonne Paris Cite, UMR 8145, Lab MAP5, Paris, France
[3] Univ Exeter, Exeter, Devon, England
[4] Univ Paris Est, LAMA, UMR 8050, UPEM,CNRS,UPEC, Champs Sur Marne, France
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Strong invariance principle; KMT approximation; nonuniformly expanding dynamical systems; Markov chain; STRONG APPROXIMATION; RANDOM-VARIABLES; PARTIAL SUMS; DECAY; KOMLOS;
D O I
10.1142/S0219493720500021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a large class of quickly mixing dynamical systems, we prove that the error in the almost sure approximation with a Brownian motion is of order O ((log n)(a)) with a >= 2. Specifically, we consider nonuniformly expanding maps with exponential and stretched exponential decay of correlations, with one-dimensional Holder continuous observables.
引用
收藏
页数:28
相关论文
共 35 条
[1]   ERGODIC-THEORY FOR MARKOV FIBERED SYSTEMS AND PARABOLIC RATIONAL MAPS [J].
AARONSON, J ;
DENKER, M ;
URBANSKI, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) :495-548
[2]  
Aaronson J., 2001, STOCH DYNAM, V1, P193, DOI [10.1142/S0219493701000114, DOI 10.1142/S0219493701000114]
[3]  
[Anonymous], 1966, Studia Sci. Math. Hungar
[4]  
[Anonymous], ARXIV171109245
[5]  
[Anonymous], AM MATH SOC MEM
[6]  
[Anonymous], ARXIVMATH0311189
[7]  
[Anonymous], 1964, Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete
[8]  
[Anonymous], 1984, Trudy Inst. Mat.
[9]  
[Anonymous], 984 LEN BRANCH STEKL
[10]   KOMLOS-MAJOR-TUSNADY APPROXIMATION UNDER DEPENDENCE [J].
Berkes, Istvan ;
Liu, Weidong ;
Wu, Wei Biao .
ANNALS OF PROBABILITY, 2014, 42 (02) :794-817