Matrix Ap weights via maximal functions

被引:45
作者
Goldberg, M [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.2140/pjm.2003.211.201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The matrix A(p) condition extends several results in weighted norm theory to functions taking values in a finite-dimensional vector space. Here we show that the matrix Ap condition leads to L-p-boundedness of a Hardy-Littlewood maximal function, then use this estimate to establish a bound for the weighted L-p norm of singular integral operators.
引用
收藏
页码:201 / 220
页数:20
相关论文
共 24 条
[1]  
[Anonymous], HARMONIC ANAL
[2]  
[Anonymous], ALGEBRA ANAL
[3]   Inverse volume inequalities for matrix weights [J].
Bownik, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (01) :383-410
[4]   WEIGHTED NORM INEQUALITIES AND SCHUR LEMMA [J].
CHRIST, M .
STUDIA MATHEMATICA, 1984, 78 (03) :309-319
[5]   A NOTE ON WEIGHTED NORM INEQUALITIES FOR THE HARDY-LITTLEWOOD MAXIMAL OPERATOR [J].
CHRIST, M ;
FEFFERMAN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (03) :447-448
[6]   Vector A2 weights and a Hardy-Littlewood maximal function [J].
Christ, M ;
Goldberg, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (05) :1995-2002
[7]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[8]   THE THEORY OF WEIGHTS AND THE DIRICHLET PROBLEM FOR ELLIPTIC-EQUATIONS [J].
FEFFERMAN, RA ;
KENIG, CE ;
PIPHER, J .
ANNALS OF MATHEMATICS, 1991, 134 (01) :65-124
[9]   BMO FROM DYADIC BMO [J].
GARNETT, JB ;
JONES, PW .
PACIFIC JOURNAL OF MATHEMATICS, 1982, 99 (02) :351-371
[10]  
GILLESPIE A, 1998, LOGARITHMIC GROWTH M