State of Charge Estimation of a Composite Lithium-Based Battery Model Based on an Improved Extended Kalman Filter Algorithm

被引:10
作者
Ding, Ning [1 ]
Prasad, Krishnamachar [1 ]
Lie, Tek Tjing [1 ]
Cui, Jinhui [2 ]
机构
[1] Auckland Univ Technol, Sch Engn Comp & Math Sci, Auckland 1010, New Zealand
[2] Chongqing Datang Int Wulong Hydropower Dev Co Ltd, Chongqing 408500, Peoples R China
关键词
composite battery model; state of charge; improved extended Kalman filter; state of charge estimation;
D O I
10.3390/inventions4040066
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The battery State of Charge (SoC) estimation is one of the basic and significant functions for Battery Management System (BMS) in Electric Vehicles (EVs). The SoC is the key to interoperability of various modules and cannot be measured directly. An improved Extended Kalman Filter (iEKF) algorithm based on a composite battery model is proposed in this paper. The approach of the iEKF combines the open-circuit voltage (OCV) method, coulomb counting (Ah) method and EKF algorithm. The mathematical model of the iEKF is built and four groups of experiments are conducted based on LiFePO4 battery for offline parameter identification of the model. The iEKF is verified by real battery data. The simulation results with the proposed iEKF algorithm under both static and dynamic operation conditions show a considerable accuracy of SoC estimation.
引用
收藏
页数:21
相关论文
共 52 条
[1]   Battery state-of-charge estimator using the SVM technique [J].
Alvarez Anton, J. C. ;
Garcia Nieto, P. J. ;
de Cos Juez, F. J. ;
Sanchez Lasheras, F. ;
Gonzalez Vega, M. ;
Roqueni Gutierrez, M. N. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (09) :6244-6253
[2]  
[Anonymous], 2003, KALMAN FILTER PARTIC
[3]   A comparative study and validation of state estimation algorithms for Li-ion batteries in battery management systems [J].
Barillas, Joaquin Klee ;
Li, Jiahao ;
Guenther, Clemens ;
Danzer, Michael A. .
APPLIED ENERGY, 2015, 155 :455-462
[4]   A review on lithium-ion battery ageing mechanisms and estimations for automotive applications [J].
Barre, Anthony ;
Deguilhem, Benjamin ;
Grolleau, Sebastien ;
Gerard, Mathias ;
Suard, Frederic ;
Riu, Delphine .
JOURNAL OF POWER SOURCES, 2013, 241 :680-689
[5]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[6]  
Best MC, 2000, VEHICLE SYST DYN, V34, P57, DOI 10.1076/0042-3114(200008)34:1
[7]  
1-K
[8]  
FT057
[9]   Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter [J].
Bizeray, A. M. ;
Zhao, S. ;
Duncan, S. R. ;
Howey, D. A. .
JOURNAL OF POWER SOURCES, 2015, 296 :400-412
[10]   A comprehensive review on estimation strategies used in hybrid and battery electric vehicles [J].
Cuma, Mehmet Ugras ;
Koroglu, Tahsin .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 42 :517-531