Enabling Robust SOT-MTJ Crossbars for Machine Learning using Sparsity-Aware Device-Circuit Co-design

被引:20
作者
Sharma, Tanvi [1 ]
Wang, Cheng [1 ]
Agrawal, Amogh [1 ]
Roy, Kaushik [1 ]
机构
[1] Purdue Univ, Elect & Comp Engn, W Lafayette, IN 47907 USA
来源
2021 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED) | 2021年
基金
美国国家科学基金会;
关键词
D O I
10.1109/ISLPED52811.2021.9502492
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Embedded non-volatile memory (eNVM) based crossbars have emerged as energy-efficient building blocks for machine learning accelerators. However, the analog computations in crossbars introduce errors due to several non-idealities. Moreover, since communications between crossbars are usually done in the digital domain, the energy and area costs are dominated by the Analog-to-Digital Converters (ADC). Among the eNVM technologies, Resistive Random-Access-Memory (RRAM) and Phase-Change Memory (PCM) devices suffer from poor endurance, write variability and conductance drift. Whereas magneto-resistive technologies provide superior endurance, write stability and reliability. To that effect, we propose sparsity-aware device/circuit co-design of robust crossbars using Spin-Orbit-Torque Magnetic Tunnel Junctions (SOT-MTJs). Note, standard MTJs have low R-OFF/R-ON and low R-ON, making them unsuitable for crossbars. In this work, we first demonstrate SOT-MTJs as crossbar elements with high R-ON and high R-OFF/R-ON by allowing the read-path to have thicker tunneling-barrier, leaving the write path undisturbed. Second, through extensive simulations, we quantitatively assess the impact of various device-circuit parameters such as R-ON, R-OFF/R-ON ratio, crossbar size, along with input and weight sparsity, on both circuit and application level accuracy and energy consumption. We evaluate system accuracy for Resnet-20 inference on CIFAR-10 dataset and show that leveraging sparsity allows reduced ADC precision, without degrading accuracy. Our results show that an SOT-MTJ (R-ON=200k Omega and E-OFF/R-ON=7) crossbar array of size 32x32 could achieve near-software accuracy. The 64x64 and 128x128 crossbars show an accuracy degradation of 2% and 9.8%, respectively, from the software accuracy and an energy improvement of upto 3.8 x and 6.3x compared to a 32x32array with 4bit-ADC.
引用
收藏
页数:6
相关论文
共 24 条
[1]   PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine Learning Inference [J].
Ankit, Aayush ;
El Hajj, Izzat ;
Chalamalasetti, Sai Rahul ;
Ndu, Geoffrey ;
Foltin, Martin ;
Williams, R. Stanley ;
Faraboschi, Paolo ;
Hwu, Wen-mei ;
Strachan, John Paul ;
Roy, Kaushik ;
Milojicic, Dejan S. .
TWENTY-FOURTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS (ASPLOS XXIV), 2019, :715-731
[2]  
[Anonymous], 2009, IEDM
[3]   Physical origin of the resistance drift exponent in amorphous phase change materials [J].
Boniardi, Mattia ;
Ielmini, Daniele .
APPLIED PHYSICS LETTERS, 2011, 98 (24)
[4]   GENIEx: A Generalized Approach to Emulating Non-Ideality in Memristive Xbars using Neural Networks [J].
Chakraborty, Indranil ;
Ali, Mustafa Fayez ;
Kim, Dong Eun ;
Ankit, Aayush ;
Roy, Kaushik .
PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
[5]  
Chakraborty J, 2020, PROCEEDINGS OF THE 2020 IEEE 10TH INTERNATIONAL CONFERENCE ON NANOMATERIALS: APPLICATIONS & PROPERTIES (NAP-2020)
[6]   PRIME: A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory [J].
Chi, Ping ;
Li, Shuangchen ;
Xu, Cong ;
Zhang, Tao ;
Zhao, Jishen ;
Liu, Yongpan ;
Wang, Yu ;
Xie, Yuan .
2016 ACM/IEEE 43RD ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2016, :27-39
[7]  
Choquette J., 2020, IEEE HOT CHIPS S
[8]  
Doevenspeck J., 2020, S VLSI TECH
[9]   A 14 nm Embedded STT-MRAM CMOS Technology [J].
Edelstein, D. ;
Rizzolo, M. ;
Sil, D. ;
Dutta, A. ;
DeBrosse, J. ;
Wordeman, M. ;
Arceo, A. ;
Chu, I. C. ;
Demarest, J. ;
Edwards, E. R. J. ;
Evarts, E. R. ;
Fullam, J. ;
Gasasira, A. ;
Hu, G. ;
Iwatake, M. ;
Johnson, R. ;
Katragadda, V ;
Levin, T. ;
Li, J. ;
Liu, Y. ;
Long, C. ;
Maffitt, T. ;
McDermott, S. ;
Mehta, S. ;
Mehta, V ;
Metzler, D. ;
Morillo, J. ;
Nakamura, Y. ;
Nguyen, S. ;
Nieves, P. ;
Pai, V ;
Patlolla, R. ;
Pujari, R. ;
Southwick, R. ;
Standaert, T. ;
van der Straten, O. ;
Wu, H. ;
Yang, C-C ;
Houssameddine, D. ;
Slaughter, J. M. ;
Worledge, D. C. .
2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
[10]  
Fleischer B., 2020, IBM Research Blog