Periodic solutions of periodic delay Lotka-Volterra equations and systems

被引:161
作者
Li, YK [1 ]
Kuang, Y
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
[2] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
关键词
Lotka-Volterra equation; positive periodic solution; distributed delay; state-dependent delay; Fredholm mapping;
D O I
10.1006/jmaa.2000.7248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the continuation theorem of coincidence degree theory, sufficient and realistic conditions are obtained for the existence of positive periodic solutions for both periodic Lotka-Volterra equations and systems with distributed or state-dependent delays. Our results substantially extend and improve existing results. (C) 2001 Academic Press.
引用
收藏
页码:260 / 280
页数:21
相关论文
共 14 条
[1]   PERIODIC-SOLUTIONS OF SINGLE-SPECIES MODELS WITH PERIODIC DELAY [J].
FREEDMAN, HI ;
WU, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (03) :689-701
[2]  
Gaines RE, 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[3]   ENVIRONMENTAL PERIODICITY AND TIME DELAYS IN A FOOD-LIMITED POPULATION-MODEL [J].
GOPALSAMY, K ;
KULENOVIC, MRS ;
LADAS, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 147 (02) :545-555
[4]  
Halbach U., 1973, pUnpaginated
[5]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[6]   COINCIDENCE DEGREE AND PERIODIC-SOLUTIONS OF NEUTRAL EQUATIONS [J].
HALE, JK ;
MAWHIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :295-307
[7]  
Kuang Y, 1993, Mathematics in Science and Engineering
[8]  
Li YK, 1999, P AM MATH SOC, V127, P1331
[9]   PERIODIC-SOLUTIONS OF SOME VECTOR RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
MAWHIN, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 45 (03) :588-603
[10]  
May R. M., 1974, STABILITY COMPLEXITY