Consistency of a simple multidimensional scheme for Hamilton-Jacobi-Bellman equations

被引:9
作者
Munos, R [1 ]
Zidani, H
机构
[1] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[2] ENSTA, Lab Math Appl, F-75739 Paris, France
关键词
D O I
10.1016/j.crma.2005.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This Note presents an approximation scheme for second-order Hamilton-Jacobi-Bellman equations arising in stochastic optimal control. The scheme is based on a Markov chain approximation method. It is easy to implement in any dimension. The consistency of the scheme is proved, which guarantees its convergence. (c) 2005 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:499 / 502
页数:4
相关论文
共 6 条
[1]   A fast algorithm for the two dimensional HJB equation of stochastic control [J].
Bonnans, JF ;
Ottenwaelter, E ;
Zidani, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2004, 38 (04) :723-735
[2]   Consistency of generalized finite difference schemes for the stochastic HJB equation [J].
Bonnans, JF ;
Zidani, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) :1008-1021
[3]   AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES [J].
CAMILLI, F ;
FALCONE, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (01) :97-122
[4]  
Kushner H.J., 2001, APPL MATH, V24
[5]  
LIONS PL, 1980, RAIRO-ANAL NUMER-NUM, V14, P369
[6]   Variable resolution discretization in optimal control [J].
Munos, R ;
Moore, A .
MACHINE LEARNING, 2002, 49 (2-3) :291-323