Klebsiella pneumoniae is a ubiquitous opportunistic pathogen that colonizes at the mucosal surfaces in humans and causes severe diseases. Many clinical strains of K. pneumoniae are highly resistant to antibiotics. Here, we used fluorescence quenching to show that the flavonols galangin, myricetin, quercetin, and kaempferol, bearing different numbers of hydroxyl substituent on the aromatic rings, may inhibit dNTP binding of the primary replicative DnaB helicase of K. pneumoniae (KpDnaB), an essential component of the cellular replication machinery critical for bacterial survival. The binding affinity of KpDnaB to dNTPs varies in the following order: dCTP similar to dGTP > dTTP > dATP. Addition of 10 mu M galangin significantly decreased the binding ability of KpDnaB to dATP, whereas the binding affinity of KpDnaB to dGTP that was almost unaffected. Our analyses suggest that these flavonol compounds may be used in the development of new antibiotics that target K. pneumoniae and other bacteria.