ON THE UPPER BOUND FOR THE ABSOLUTE CONSTANT IN THE BERRY-ESSEEN INEQUALITY

被引:41
作者
Korolev, V. Yu. [1 ,2 ]
Shevtsova, I. G. [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Informat Problems, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
central limit theorem; Berry-Esseen inequality; smoothing inequality; CENTRAL-LIMIT-THEOREM; INDEPENDENT RANDOM-VARIABLES; NORMAL APPROXIMATION; DISTRIBUTIONS; SUMS;
D O I
10.1137/S0040585X97984449
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper describes the history of the search for unconditional and conditional upper bounds of the absolute constant in the Berry-Esseen inequality for sums of independent identically distributed random variables. Computational procedures are described. New estimates are presented from which it follows that the absolute constant in the classical Berry-Esseen inequality does not exceed 0.5129.
引用
收藏
页码:638 / 658
页数:21
相关论文
共 51 条
[31]  
PRAWITZ H, 1972, SCAND ACTUAR J, V2, P138
[32]  
PRAWITZ H, 1972, LECT GIV JUN 1 UNPUB
[33]  
PRAWITZ H, 1975, SCAND ACTUAR J, V3, P145
[34]  
ROGOZIN BA, 1960, THEOR PROBAB APPL, V5, P114
[35]   A smoothing inequality [J].
Shevtsova, I. G. .
DOKLADY MATHEMATICS, 2010, 81 (01) :105-107
[36]   The lower asymptotically exact constant in the central limit theorem [J].
Shevtsova, I. G. .
DOKLADY MATHEMATICS, 2010, 81 (01) :83-86
[37]   Sharpening of the upper bound of the absolute constant in the Berry-Esseen inequality [J].
Shevtsova, I. G. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2007, 51 (03) :549-553
[38]  
SHEVTSOVA IG, 2008, COLLECTION PAPERS YO, P101
[39]  
Shiganov I.S., 1986, J SOVIET MATH, P2545, DOI [10.1007/BF01121471, DOI 10.1007/BF01121471]
[40]  
TAKANO K, 1950, KAKYURAKU I STAT MAT, V6