ON THE UPPER BOUND FOR THE ABSOLUTE CONSTANT IN THE BERRY-ESSEEN INEQUALITY

被引:41
作者
Korolev, V. Yu. [1 ,2 ]
Shevtsova, I. G. [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Informat Problems, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
central limit theorem; Berry-Esseen inequality; smoothing inequality; CENTRAL-LIMIT-THEOREM; INDEPENDENT RANDOM-VARIABLES; NORMAL APPROXIMATION; DISTRIBUTIONS; SUMS;
D O I
10.1137/S0040585X97984449
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper describes the history of the search for unconditional and conditional upper bounds of the absolute constant in the Berry-Esseen inequality for sums of independent identically distributed random variables. Computational procedures are described. New estimates are presented from which it follows that the absolute constant in the classical Berry-Esseen inequality does not exceed 0.5129.
引用
收藏
页码:638 / 658
页数:21
相关论文
共 51 条
[1]  
BENTKUS V, 1994, J THEORET PROBAB, V7, P211, DOI 10.1007/BF02214268
[2]  
BENTKUS V, 1989, LITHUANIAN MATH J, V29, P321
[3]  
BENTKUS V, 1991, 91078 U BIEL
[4]  
Bergström H, 1949, SKAND AKTUARIETIDSKR, V32, P37
[5]  
Bergström H, 1944, SKAND AKTUARIETIDSKR, V27, P139
[6]   The accuracy of the Gaussian approximation to the sum of independent variates [J].
Berry, Andrew C. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1941, 49 (1-3) :122-136
[7]  
Bhattacharya R.N., 1976, Normal Approximation and Asymptotic Expansions
[8]   A new asymptotic expansion and asymptotically best constants in Lyapunov's theorem. III [J].
Chistyakov, GP .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2002, 47 (03) :395-414
[9]  
Chistyakov GP, 2001, THEOR PROBAB APPL+, V46, P226
[10]   A new asymptotic expansion and asymptotically best constants in Lyapunov's theorem. II [J].
Chistyakov, GP .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2001, 46 (03) :516-522