n-Copure projective modules

被引:1
作者
Gao Zenghui [1 ]
机构
[1] Chengdu Univ Informat Technol, Chengdu, Peoples R China
关键词
n-copure projective module; strongly copure injective module; (relative) hereditary ring; QF ring; copure flat module; INJECTIVE-MODULES; FLAT MODULES; DIMENSIONS; RINGS;
D O I
10.1134/S000143461501006X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring, n a fixed nonnegative integer and F (n) the class of all left R-modules of flat dimension at most n. A left R-module M is called n-copure projective if Ext (R) (1) (M,F) = 0 for any F a F (n) . Some examples are given to show that n-copure projective modules need not be m-copure projective whenever m > n. Then we characterize the well-known QF rings and IF rings in terms of n-copure projective modules. Finally, we prove that a ring R is relative left hereditary if and only if every submodule of a projective (or free) left R-module is n-copure projective if and only if id (R) (N) a parts per thousand currency sign 1 for every left R-module N with N a F (n) .
引用
收藏
页码:50 / 56
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 1992, GRAD TEXTS MATH
[2]   Strongly Gorenstein projective, injective, and flat modules [J].
Bennis, Driss ;
Mahdou, Najib .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :437-445
[3]  
Bennis D, 2010, P AM MATH SOC, V138, P461
[4]   RINGS WHICH HAVE FLAT INJECTIVE MODULES [J].
COLBY, RR .
JOURNAL OF ALGEBRA, 1975, 35 (1-3) :239-252
[5]   On copure flat modules and flat resolvents [J].
Ding, NQ ;
Chen, JL .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (03) :1071-1081
[6]   THE FLAT DIMENSIONS OF INJECTIVE-MODULES [J].
DING, NQ ;
CHEN, JL .
MANUSCRIPTA MATHEMATICA, 1993, 78 (02) :165-177
[7]  
Enochs E. E., 1993, COMMENT MATH U CAROL, V34, P203
[8]  
Enochs E.E., 1991, QUAESTIONES MATH, V14, P401, DOI [DOI 10.1080/16073606.1991.9631658, 10.1080/16073606.1991.9631658]
[9]  
Enochs E. E., 2000, RELATIVE HOMOLOGICAL, V30
[10]   ON COPURE PROJECTIVE MODULES AND COPURE PROJECTIVE DIMENSIONS [J].
Fu, Xianhui ;
Zhu, Haiyan ;
Ding, Nanqing .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (01) :343-359