n-Copure projective modules

被引:1
作者
Gao Zenghui [1 ]
机构
[1] Chengdu Univ Informat Technol, Chengdu, Peoples R China
关键词
n-copure projective module; strongly copure injective module; (relative) hereditary ring; QF ring; copure flat module; INJECTIVE-MODULES; FLAT MODULES; DIMENSIONS; RINGS;
D O I
10.1134/S000143461501006X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring, n a fixed nonnegative integer and F (n) the class of all left R-modules of flat dimension at most n. A left R-module M is called n-copure projective if Ext (R) (1) (M,F) = 0 for any F a F (n) . Some examples are given to show that n-copure projective modules need not be m-copure projective whenever m > n. Then we characterize the well-known QF rings and IF rings in terms of n-copure projective modules. Finally, we prove that a ring R is relative left hereditary if and only if every submodule of a projective (or free) left R-module is n-copure projective if and only if id (R) (N) a parts per thousand currency sign 1 for every left R-module N with N a F (n) .
引用
收藏
页码:50 / 56
页数:7
相关论文
共 21 条
  • [1] [Anonymous], 1992, GRAD TEXTS MATH
  • [2] Strongly Gorenstein projective, injective, and flat modules
    Bennis, Driss
    Mahdou, Najib
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) : 437 - 445
  • [3] Bennis D, 2010, P AM MATH SOC, V138, P461
  • [4] RINGS WHICH HAVE FLAT INJECTIVE MODULES
    COLBY, RR
    [J]. JOURNAL OF ALGEBRA, 1975, 35 (1-3) : 239 - 252
  • [5] On copure flat modules and flat resolvents
    Ding, NQ
    Chen, JL
    [J]. COMMUNICATIONS IN ALGEBRA, 1996, 24 (03) : 1071 - 1081
  • [6] THE FLAT DIMENSIONS OF INJECTIVE-MODULES
    DING, NQ
    CHEN, JL
    [J]. MANUSCRIPTA MATHEMATICA, 1993, 78 (02) : 165 - 177
  • [7] Enochs E. E., 1993, COMMENT MATH U CAROL, V34, P203
  • [8] Enochs E.E., 1991, QUAESTIONES MATH, V14, P401, DOI [DOI 10.1080/16073606.1991.9631658, 10.1080/16073606.1991.9631658]
  • [9] Enochs E. E., 2000, RELATIVE HOMOLOGICAL, V30
  • [10] ON COPURE PROJECTIVE MODULES AND COPURE PROJECTIVE DIMENSIONS
    Fu, Xianhui
    Zhu, Haiyan
    Ding, Nanqing
    [J]. COMMUNICATIONS IN ALGEBRA, 2012, 40 (01) : 343 - 359