The double-exponential transformation in numerical analysis

被引:155
作者
Mori, M [1 ]
Sugihara, M
机构
[1] Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
[2] Nagoya Univ, Grad Sch Engn, Chikusa Ku, Nagoya, Aichi 4648603, Japan
基金
日本学术振兴会;
关键词
numerical integration; quadrature formula; double-exponential transformation; sine method; Fourier-type integral;
D O I
10.1016/S0377-0427(00)00501-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The double-exponential transformation was first proposed by Takahasi and Mori in 1974 for the efficient evaluation of integrals of an analytic function with end-point singularity. Afterwards, this transformation was improved for the evaluation of oscillatory functions like Fourier integrals. Recently, it turned out that the double-exponential transformation is useful not only for numerical integration but also for various kinds of Sine numerical methods. The purpose of the present paper is to review the double-exponential transformation in numerical integration and in a variety of Sine numerical methods. (C) 2001 Elsevier Science B.V. All rights reserved. MSC. 65D30; 65D32.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 44 条
[1]  
Akhiezer NI., 1956, Theory of approximation
[2]  
ANDREWS GE, 1985, LECT NOTES MATH, V1171, P36
[3]  
[Anonymous], MATH USSR SBORNIK
[4]   Multiple orthogonal polynomials [J].
Aptekarev, AI .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :423-447
[5]   Semiclassical multiple orthogonal polynomials and the properties of Jacobi-Bessel polynomials [J].
Aptekarev, AI ;
Marcellan, F ;
Rocha, IA .
JOURNAL OF APPROXIMATION THEORY, 1997, 90 (01) :117-146
[6]  
APTEKAREV AI, 1986, MATH USSR SB, V53, P233, DOI DOI 10.1070/SM1986v053n01ABEH002918
[7]  
BARNSLEY MF, 1982, B AM MATH SOC, V7, P381, DOI 10.1090/S0273-0979-1982-15043-1
[8]  
Beardon A.F., 1991, Graduate Texts in Mathematics, V132
[9]  
BESSIS D, 1990, NATO ADV SCI I C-MAT, V294, P55
[10]   ORTHOGONALITY PROPERTIES OF ITERATED POLYNOMIAL-MAPPINGS [J].
BESSIS, D ;
MOUSSA, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (04) :503-529