Secret key rate of a continuous-variable quantum-key-distribution scheme when the detection process is inaccessible to eavesdroppers

被引:6
作者
Namiki, Ryo [1 ]
Kitagawa, Akira [2 ]
Hirano, Takuya [1 ]
机构
[1] Gakushuin Univ, Dept Phys, Toshima Ku, 1-5-1 Mejiro, Tokyo 1718588, Japan
[2] Kochi Univ, Fac Educ, 2-5-1 Akebono Cho, Kochi 7808520, Japan
关键词
DISTRIBUTION NETWORK; FIELD-TEST; SECURITY; AREA;
D O I
10.1103/PhysRevA.98.042319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have developed a method to calculate a secret key rate of a continuous-variable quantum-key-distribution scheme using four coherent states and postselection for a general model of Gaussian attacks. We assume that the transmission line and detection process are described by a pair of Gaussian channels. In our analysis, while the loss and noise on the transmission line are induced by an eavesdropper, Eve, who can replace the transmission line with a lossless and noiseless optical fiber, she is assumed inaccessible to the detection process. By separating the transmission noise and detection noise, we can always extract a larger key compared with the case that all loss and noises are induced by an eavesdropper's interference. An asymptotic key rate against collective Gaussian attacks can be determined numerically for the given channels' parameters. The improvement of the key rates turns out to be more significant for the reverse-reconciliation scheme.
引用
收藏
页数:9
相关论文
共 49 条
[1]   Higher-security thresholds for quantum key distribution by improved analysis of dark counts [J].
Boileau, JC ;
Batuwantudawe, J ;
Laflamme, R .
PHYSICAL REVIEW A, 2005, 72 (03)
[2]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[3]   Metropolitan Quantum Key Distribution with Silicon Photonics [J].
Bunandar, Darius ;
Lentine, Anthony ;
Lee, Catherine ;
Cai, Hong ;
Long, Christopher M. ;
Boynton, Nicholas ;
Martinez, Nicholas ;
DeRose, Christopher ;
Chen, Changchen ;
Grein, Matthew ;
Trotter, Douglas ;
Starbuck, Andrew ;
Pomerene, Andrew ;
Hamilton, Scott ;
Wong, Franco N. C. ;
Camacho, Ryan ;
Davids, Paul ;
Urayama, Junji ;
Englund, Dirk .
PHYSICAL REVIEW X, 2018, 8 (02)
[4]   Practical challenges in quantum key distribution [J].
Diamanti, Eleni ;
Lo, Hoi-Kwong ;
Qi, Bing ;
Yuan, Zhiliang .
NPJ QUANTUM INFORMATION, 2016, 2
[5]   Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations [J].
Diamanti, Eleni ;
Leverrier, Anthony .
ENTROPY, 2015, 17 (09) :6072-6092
[6]   Quantum key distribution with hacking countermeasures and long term field trial [J].
Dixon, A. R. ;
Dynes, J. F. ;
Lucamarini, M. ;
Froehlich, B. ;
Sharpe, A. W. ;
Plews, A. ;
Tam, W. ;
Yuan, Z. L. ;
Tanizawa, Y. ;
Sato, H. ;
Kawamura, S. ;
Fujiwara, M. ;
Sasaki, M. ;
Shields, A. J. .
SCIENTIFIC REPORTS, 2017, 7
[7]   High speed prototype quantum key distribution system and long term field trial [J].
Dixon, A. R. ;
Dynes, J. F. ;
Lucamarini, M. ;
Froehlich, B. ;
Sharpe, A. W. ;
Plews, A. ;
Tam, S. ;
Yuan, Z. L. ;
Tanizawa, Y. ;
Sato, H. ;
Kawamura, S. ;
Fujiwara, M. ;
Sasaki, M. ;
Shields, A. J. .
OPTICS EXPRESS, 2015, 23 (06) :7583-7592
[8]   Distilling Gaussian states with Gaussian operations is impossible [J].
Eisert, J ;
Scheel, S ;
Plenio, MB .
PHYSICAL REVIEW LETTERS, 2002, 89 (13) :137903-137903
[9]   Gaussian transformations and distillation of entangled Gaussian states -: art. no. 137904 [J].
Fiurásek, J .
PHYSICAL REVIEW LETTERS, 2002, 89 (13) :137904-137904
[10]   Field test of a continuous-variable quantum key distribution prototype [J].
Fossier, S. ;
Diamanti, E. ;
Debuisschert, T. ;
Villing, A. ;
Tualle-Brouri, R. ;
Grangier, P. .
NEW JOURNAL OF PHYSICS, 2009, 11