A new method for investigating Euler sums

被引:20
作者
Basu, A [1 ]
Apostol, TM [1 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
关键词
Riemann zeta function; Euler sums; recursion formulas;
D O I
10.1023/A:1009868016412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Euler discovered a recursion formula for the Riemann zeta function evaluated at the even integers. He also evaluated special Dirichlet series whose coefficients are the partial sums of the harmonic series. This paper introduces a new method for deducing Euler's formulas as well as a host of new relations, not only for the zeta function but for several allied functions.
引用
收藏
页码:397 / 419
页数:23
相关论文
共 10 条
[1]  
[Anonymous], 1953, AM MATH MONTHLY
[2]  
Apostol T, 1998, INTRO ANAL NUMBER TH
[3]   DIRICHLET SERIES RELATED TO THE RIEMANN ZETA FUNCTION [J].
APOSTOL, TM ;
VU, TH .
JOURNAL OF NUMBER THEORY, 1984, 19 (01) :85-102
[4]  
Bailey D., 1994, Experimental Mathematics, V3, P17, DOI [DOI 10.1080/10586458.1994.10504573, 10.1080/10586458.1994.10504573]
[5]  
Bromwich T.J.I., 1942, INTRO THEORY INFINIT
[6]  
CRANDALL R. E., 1994, Exp. Math., V3, P275
[7]   The algebra of multiple harmonic series [J].
Hoffman, ME .
JOURNAL OF ALGEBRA, 1997, 194 (02) :477-495
[8]  
KNOPP K, 1948, THEORY APPL INFINITE
[9]  
Mordell LJ., 1958, J. Lond. Math. Soc, V33, P368, DOI [10.1112/jlms/s1-33.3.368, DOI 10.1112/JLMS/S1-33.3.368]
[10]  
Ramanujan S., 1957, NOTE BOOKS, V2