Genetic variants in Alzheimer disease - molecular and brain network approaches

被引:69
|
作者
Gaiteri, Chris [1 ]
Mostafavi, Sara [2 ,3 ]
Honey, Christopher J. [4 ]
De Jager, Philip L. [5 ,6 ]
Bennett, David A. [1 ]
机构
[1] Rush Univ, Med Ctr, Rush Alzheimers Dis Ctr, 600 S Paulina St, Chicago, IL 60612 USA
[2] Univ British Columbia, Dept Stat & Med Genet, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
[3] Univ British Columbia, Ctr Mol & Med & Therapeut, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
[4] Univ Toronto, Dept Psychol, 100 St George St,4th Floor Sidney Smith Hall, Toronto, ON M5S 3G3, Canada
[5] Brigham & Womens Hosp, Inst Neurosci, Dept Neurol, Program Translat NeuroPsychiat Genom, 75 Francis St, Boston, MA 02115 USA
[6] Brigham & Womens Hosp, Dept Psychiat, 75 Francis St, Boston, MA 02115 USA
关键词
DEFAULT-MODE NETWORK; MILD COGNITIVE IMPAIRMENT; GENOME-WIDE ASSOCIATION; RESTING-STATE FMRI; FUNCTIONAL CONNECTIVITY; AMYLOID-BETA; SMALL-WORLD; PROTEIN NETWORK; NEURODEGENERATIVE DISEASES; FRONTOTEMPORAL DEMENTIA;
D O I
10.1038/nrneurol.2016.84
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models.
引用
收藏
页码:413 / 427
页数:15
相关论文
共 50 条
  • [41] Local Brain Network Alterations and Olfactory Impairment in Alzheimer's Disease: An fMRI and Graph-Based Study
    Zhu, Bing
    Li, Qi
    Xi, Yang
    Li, Xiujun
    Yang, Yu
    Guo, Chunjie
    BRAIN SCIENCES, 2023, 13 (04)
  • [42] Memory performance-related dynamic brain connectivity indicates pathological burden and genetic risk for Alzheimer's disease
    Quevenco, Frances C.
    Preti, Maria G.
    van Bergen, Jiri M. G.
    Hua, Jun
    Wyss, Michael
    Li, Xu
    Schreiner, Simon J.
    Steininger, Stefanie C.
    Meyer, Rafael
    Meier, Irene B.
    Brickman, Adam M.
    Leh, Sandra E.
    Gietl, Anton F.
    Buck, Alfred
    Nitsch, Roger M.
    Pruessmann, Klaas P.
    van Zijl, Peter C. M.
    Hock, Christoph
    Van De Ville, Dimitri
    Unschuld, Paul G.
    ALZHEIMERS RESEARCH & THERAPY, 2017, 9
  • [43] The impact of genetic risk for Alzheimer's disease on the structural brain networks of young adults
    Mirza-Davies, Anastasia
    Foley, Sonya
    Caseras, Xavier
    Baker, Emily
    Holmans, Peter
    Escott-Price, Valentina
    Jones, Derek K. K.
    Harrison, Judith R. R.
    Messaritaki, Eirini
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [44] Challenge accepted: uncovering the role of rare genetic variants in Alzheimer's disease
    Khani, Marzieh
    Gibbons, Elizabeth
    Bras, Jose
    Guerreiro, Rita
    MOLECULAR NEURODEGENERATION, 2022, 17 (01)
  • [45] A Novel Joint Brain Network Analysis Using Longitudinal Alzheimer's Disease Data
    Kundu, Suprateek
    Lukemire, Joshua
    Wang, Yikai
    Guo, Ying
    Weiner, Michael W.
    Schuff, Norbert
    Rosen, Howard J.
    Miller, Bruce L.
    Neylan, Thomas
    Hayes, Jacqueline
    Finley, Shannon
    Aisen, Paul
    Khachaturian, Zaven
    Thomas, Ronald G.
    Donohue, Michael
    Walter, Sarah
    Gessert, Devon
    Sather, Tamie
    Jiminez, Gus
    Thal, Leon
    Brewer, James
    Vanderswag, Helen
    Fleisher, Adam
    Davis, Melissa
    Morrison, Rosemary
    Petersen, Ronald
    Jack, Clifford R.
    Bernstein, Matthew
    Borowski, Bret
    Gunter, Jeff
    Senjem, Matt
    Vemuri, Prashanthi
    Jones, David
    Kantarci, Kejal
    Ward, Chad
    Mason, Sara S.
    Albers, Colleen S.
    Knopman, David
    Johnson, Kris
    Jagust, William
    Landau, Susan
    Trojanowki, John Q.
    Shaw, Leslie M.
    Lee, Virginia
    Korecka, Magdalena
    Figurski, Michal
    Arnold, Steven E.
    Karlawish, Jason H.
    Wolk, David
    Toga, Arthur W.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [46] Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease
    Kanatsu, Kunihiko
    Tomita, Taisuke
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2017, 22 : 180 - 192
  • [47] Investigation of the Molecular Role of Brain-Derived Neurotrophic Factor in Alzheimer's Disease
    Girotra, Pragya
    Behl, Tapan
    Sehgal, Aayush
    Singh, Sukhbir
    Bungau, Simona
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2022, 72 (02) : 173 - 186
  • [48] Brain Entropy Mapping in Healthy Aging and Alzheimer's Disease
    Wang, Ze
    FRONTIERS IN AGING NEUROSCIENCE, 2020, 12
  • [49] Inference of brain pathway activities for Alzheimer's disease classification
    Lee, Jongan
    Kim, Younghoon
    Jeong, Yong
    Na, Duk L.
    Kim, Jong-Won
    Lee, Kwang H.
    Lee, Doheon
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2015, 15
  • [50] Disrupted structural and functional brain networks in Alzheimer's disease
    Dai, Zhengjia
    Lin, Qixiang
    Li, Tao
    Wang, Xiao
    Yuan, Huishu
    Yu, Xin
    He, Yong
    Wang, Huali
    NEUROBIOLOGY OF AGING, 2019, 75 : 71 - 82