On the general sum-connectivity index of connected unicyclic graphs with k pendant vertices

被引:19
作者
Tomescu, Ioan [1 ]
Arshad, Misbah [2 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
关键词
Unicyclic graph; Pendant vertex; General sum-connectivity index; Zeroth-order general Randic index; Jensen's inequality; TREES;
D O I
10.1016/j.dam.2014.08.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that in the class of connected unicyclic graphs G of order n >= 3 having 0 <= k <= n - 3 pendant vertices, the unique graph G having minimum general sum-connectivity index chi(alpha)(G) consists of Cn-k and k pendant vertices adjacent to a unique vertex of Cn-k, if -1 <= alpha < 0. This property does not hold for zeroth-order general Randic index R-0(alpha) (G). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:306 / 309
页数:4
相关论文
共 10 条
[1]  
Bondy J.A., 2008, GTM 244
[2]  
Chen JJ, 2011, MATH COMMUN, V16, P359
[3]   On the general sum-connectivity index of trees [J].
Du, Zhibin ;
Zhou, Bo ;
Trinajstic, Nenad .
APPLIED MATHEMATICS LETTERS, 2011, 24 (03) :402-405
[4]   Minimum general sum-connectivity index of unicyclic graphs [J].
Du, Zhibin ;
Zhou, Bo ;
Trinajstic, Nenad .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (03) :697-703
[5]  
Li X., 2006, MATH CHEM MONOGRAPHS, V1
[6]  
Pan XF, 2006, MATCH-COMMUN MATH CO, V55, P409
[7]   Unicyclic graphs of given girth k ≥ 4 having smallest general sum-connectivity index [J].
Tomescu, Ioan ;
Kanwal, Salma .
DISCRETE APPLIED MATHEMATICS, 2014, 164 :344-348
[8]  
Tomescu I, 2013, MATCH-COMMUN MATH CO, V69, P535
[9]   On general sum-connectivity index [J].
Zhou, Bo ;
Trinajstic, Nenad .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (01) :210-218
[10]   On a novel connectivity index [J].
Zhou, Bo ;
Trinajstic, Nenad .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (04) :1252-1270