Improved Open-Circuit Voltage of Sb2Se3 Thin-Film Solar Cells Via Interfacial Sulfur Diffusion-Induced Gradient Bandgap Engineering

被引:20
作者
Chen, Shuo [1 ]
Ishaq, Muhammad [1 ]
Xiong, Wei [1 ]
Ali Shah, Usman [2 ,3 ]
Farooq, Umar [1 ]
Luo, Jingting [1 ]
Zheng, Zhuanghao [1 ]
Su, Zhenghua [1 ]
Fan, Ping [1 ]
Zhang, Xianghua [4 ]
Liang, Guangxing [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Shenzhen Key Lab Adv Thin Films & Applicat, Shenzhen 518060, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect WNLO, Hubei 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Hubei 430074, Peoples R China
[4] Univ Rennes, UMR 6226, CNRS, ISCR Inst Sci Chim Rennes, F-35000 Rennes, France
基金
中国国家自然科学基金;
关键词
gradient bandgaps; interfaces; open-circuit voltages; Sb2Se3 solar cells; sulfur diffusion; HIGHLY EFFICIENT; LAYER;
D O I
10.1002/solr.202100419
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of thermally deposited Sb2Se3 solar cells are severely limited by various bulk and interfacial recombination, instigating a large open-circuit voltage (V-OC) deficit. Ternary Sb-2(S,Se)(3) is considered as a remedy, however, it is also subjected to a dilemma that improvement in V-OC will be escorted by J(SC) loss due to the shrinkage of light harvest. Thus, a gradient of S/Se across the film is a prerequisite to avoid this detrimental compromise. Herein, the incorporation of S in the Sb2Se3 absorber layer evaporated from a CdS buffer layer during vapor transport deposition (VTD) process, and its further self-activated diffusion at the interface upon ambient storage is explored. For the gradient indium tin oxide (ITO)/CdS/Sb-2(S,Se)(3)/Sb2Se3/Au solar cell, the large bandgap Sb-2(S,Se)(3) at the heterojunction side contributes to high V-OC, while the narrow bandgap Sb2Se3 at the top side confirms high J(SC). Sulfur diffusion at the CdS/Sb2Se3 interface also improves the junction quality with an enlarged V-bi, reduced interfacial defects and recombination loss, thus improving V(OC )from 393 to 430 mV. Such V-OC represents the highest value for that of thermally deposited Sb2Se3 solar cells. The champion device also delivers an interesting efficiency of 7.49%. This research provides substantial guidance in exploring efficient approaches to improve the performance of Sb2Se3 solar cells.
引用
收藏
页数:11
相关论文
共 47 条
  • [21] Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells
    Li, Jianjun
    Kim, SeongYeon
    Nam, Dahyun
    Liu, Xiaoru
    Kim, JunHo
    Cheong, Hyeonsik
    Liu, Wei
    Li, Hui
    Sun, Yun
    Zhang, Yi
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 159 : 447 - 455
  • [22] Over 7% Efficiency of Sb2(S,Se)3 Solar Cells via V-Shaped Bandgap Engineering
    Li, Kanghua
    Lu, Yue
    Ke, Xiaoxing
    Li, Sen
    Lu, Shuaicheng
    Wang, Chong
    Wang, Siyu
    Chen, Chao
    Tang, Jiang
    [J]. SOLAR RRL, 2020, 4 (09):
  • [23] Orientation Engineering in Low-Dimensional Crystal-Structural Materials via Seed Screening
    Li, Kanghua
    Chen, Chao
    Lu, Shuaicheng
    Wang, Chong
    Wang, Siyu
    Lu, Yue
    Tang, Jiang
    [J]. ADVANCED MATERIALS, 2019, 31 (44)
  • [24] Improved efficiency by insertion of Zn1-xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell
    Li, Kanghua
    Kondrotas, Rokas
    Chen, Chao
    Lu, Shuaicheng
    Wen, Xixing
    Li, Dengbing
    Luo, Jiajun
    Zhao, Yang
    Tang, Jiang
    [J]. SOLAR ENERGY, 2018, 167 : 10 - 17
  • [25] Characterization of Mg and Fe doped Sb2Se3 thin films for photovoltaic application
    Li, Yang
    Zhou, Ying
    Zhu, Yining
    Chen, Chao
    Luo, Jiajun
    Ma, Jingyuan
    Yang, Bo
    Wang, Xiaojie
    Xia, Zhe
    Tang, Jiang
    [J]. APPLIED PHYSICS LETTERS, 2016, 109 (23)
  • [26] 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells
    Li, Zhiqiang
    Liang, Xiaoyang
    Li, Gang
    Liu, Haixu
    Zhang, Huiyu
    Guo, Jianxin
    Chen, Jingwei
    Shen, Kai
    San, Xingyuan
    Yu, Wei
    Schropp, Ruud E. I.
    Mai, Yaohua
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [27] Efficiency enhancement of Sb2Se3 thin-film solar cells by the co-evaporation of Se and Sb2Se3
    Li, Zhiqiang
    Zhu, Hongbing
    Guo, Yuting
    Niu, Xiaona
    Chen, Xu
    Zhang, Chong
    Zhang, Wen
    Liang, Xiaoyang
    Zhou, Dong
    Chen, Jingwei
    Mai, Yaohua
    [J]. APPLIED PHYSICS EXPRESS, 2016, 9 (05)
  • [28] Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV
    Liang, Guang-Xing
    Luo, Yan-Di
    Chen, Shuo
    Tang, Rong
    Zheng, Zhuang-Hao
    Li, Xue-Jin
    Liu, Xin-Sheng
    Liu, Yi-Ke
    Li, Ying-Fen
    Chen, Xing-Ye
    Su, Zheng-Hua
    Zhang, Xiang-Hua
    Ma, Hong-Li
    Fan, Ping
    [J]. NANO ENERGY, 2020, 73
  • [29] An effective combination reaction involved with sputtered and selenized Sb precursors for efficient Sb2Se3 thin film solar cells
    Luo, Yan-Di
    Tang, Rong
    Chen, Shuo
    Hu, Ju-Guang
    Liu, Yi-Ke
    Li, Ying-Fen
    Liu, Xin-Sheng
    Zheng, Zhuang-Hao
    Su, Zheng-Hua
    Ma, Xiu-Fang
    Fan, Ping
    Zhang, Xiang-Hua
    Ma, Hong-Li
    Chen, Zhi-Gang
    Liang, Guang-Xing
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 393
  • [30] A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells
    Mavlonov, Abdurashid
    Razykov, Takhir
    Raziq, Fazal
    Gan, Jiantuo
    Chantana, Jakapan
    Kawano, Yu
    Nishimura, Takahito
    Wei, Haoming
    Zakutayev, Andriy
    Minemoto, Takashi
    Zu, Xiaotao
    Li, Sean
    Qiao, Liang
    [J]. SOLAR ENERGY, 2020, 201 (201) : 227 - 246