Improved Open-Circuit Voltage of Sb2Se3 Thin-Film Solar Cells Via Interfacial Sulfur Diffusion-Induced Gradient Bandgap Engineering

被引:20
作者
Chen, Shuo [1 ]
Ishaq, Muhammad [1 ]
Xiong, Wei [1 ]
Ali Shah, Usman [2 ,3 ]
Farooq, Umar [1 ]
Luo, Jingting [1 ]
Zheng, Zhuanghao [1 ]
Su, Zhenghua [1 ]
Fan, Ping [1 ]
Zhang, Xianghua [4 ]
Liang, Guangxing [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Shenzhen Key Lab Adv Thin Films & Applicat, Shenzhen 518060, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect WNLO, Hubei 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Hubei 430074, Peoples R China
[4] Univ Rennes, UMR 6226, CNRS, ISCR Inst Sci Chim Rennes, F-35000 Rennes, France
基金
中国国家自然科学基金;
关键词
gradient bandgaps; interfaces; open-circuit voltages; Sb2Se3 solar cells; sulfur diffusion; HIGHLY EFFICIENT; LAYER;
D O I
10.1002/solr.202100419
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performance of thermally deposited Sb2Se3 solar cells are severely limited by various bulk and interfacial recombination, instigating a large open-circuit voltage (V-OC) deficit. Ternary Sb-2(S,Se)(3) is considered as a remedy, however, it is also subjected to a dilemma that improvement in V-OC will be escorted by J(SC) loss due to the shrinkage of light harvest. Thus, a gradient of S/Se across the film is a prerequisite to avoid this detrimental compromise. Herein, the incorporation of S in the Sb2Se3 absorber layer evaporated from a CdS buffer layer during vapor transport deposition (VTD) process, and its further self-activated diffusion at the interface upon ambient storage is explored. For the gradient indium tin oxide (ITO)/CdS/Sb-2(S,Se)(3)/Sb2Se3/Au solar cell, the large bandgap Sb-2(S,Se)(3) at the heterojunction side contributes to high V-OC, while the narrow bandgap Sb2Se3 at the top side confirms high J(SC). Sulfur diffusion at the CdS/Sb2Se3 interface also improves the junction quality with an enlarged V-bi, reduced interfacial defects and recombination loss, thus improving V(OC )from 393 to 430 mV. Such V-OC represents the highest value for that of thermally deposited Sb2Se3 solar cells. The champion device also delivers an interesting efficiency of 7.49%. This research provides substantial guidance in exploring efficient approaches to improve the performance of Sb2Se3 solar cells.
引用
收藏
页数:11
相关论文
共 47 条
  • [1] A PHOTO-ELECTROCHEMICAL CELL BASED ON CHEMICALLY DEPOSITED SB2SE3 THIN-FILM ELECTRODE AND DEPENDENCE OF DEPOSITION ON VARIOUS PARAMETERS
    BHATTACHARYA, RN
    PRAMANIK, P
    [J]. SOLAR ENERGY MATERIALS, 1982, 6 (03): : 317 - 322
  • [2] Open-Circuit Voltage Loss of Antimony Chalcogenide Solar Cells: Status, Origin, and Possible Solutions
    Chen, Chao
    Tang, Jiang
    [J]. ACS ENERGY LETTERS, 2020, 5 (07): : 2294 - 2304
  • [3] 6.5% Certified Efficiency Sb2Se3 Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer
    Chen, Chao
    Wang, Liang
    Gao, Liang
    Nam, Dahyun
    Li, Dengbing
    Li, Kanghua
    Zhao, Yang
    Ge, Cong
    Cheong, Hyeonsik
    Liu, Huan
    Song, Haisheng
    Tang, Jiang
    [J]. ACS ENERGY LETTERS, 2017, 2 (09): : 2125 - 2132
  • [4] Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics
    Chen C.
    Bobela D.C.
    Yang Y.
    Lu S.
    Zeng K.
    Ge C.
    Yang B.
    Gao L.
    Zhao Y.
    Beard M.C.
    Tang J.
    [J]. Frontiers of Optoelectronics, 2017, 10 (1) : 18 - 30
  • [5] Photoluminescence Analysis of CdS/CIGS Interfaces in CIGS Solar Cells
    Chen, Sheng-Hui
    Lin, Wei-Ting
    Chan, Shih-Hao
    Tseng, Shao-Ze
    Kuo, Chien-Cheng
    Hu, Sung-Cheng
    Peng, Wan-Hsuan
    Lu, Yung-Tien
    [J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2015, 4 (09) : P347 - P350
  • [6] Choi Y. C., 2014, ANGEW CHEMIE, V126, P1353, DOI DOI 10.1002/ANGE.201308331
  • [7] High-throughput method to deposit continuous composition spread Sb2(SexS1 - x)3 thin film for photovoltaic application
    Deng, Hui
    Yuan, Shengjie
    Yang, Xiaokun
    Zhang, Jian
    Khan, Jahangeer
    Zhao, Yang
    Ishaq, Muhammad
    Ye, Wanneng
    Cheng, Yi-Bing
    Song, Haisheng
    Tang, Jiang
    [J]. PROGRESS IN PHOTOVOLTAICS, 2018, 26 (04): : 281 - 290
  • [8] Thin film solar cells based on Ag-substituted CuSbS2 absorber
    Fu, Lijuan
    Yu, Junsheng
    Wang, Jinsong
    Xie, Fan
    Yao, Shun
    Zhang, Yongsong
    Cheng, Jiang
    Li, Lu
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 400
  • [9] Solar cell efficiency tables (version 57)
    Green, Martin
    Dunlop, Ewan
    Hohl-Ebinger, Jochen
    Yoshita, Masahiro
    Kopidakis, Nikos
    Hao, Xiaojing
    [J]. PROGRESS IN PHOTOVOLTAICS, 2021, 29 (01): : 3 - 15
  • [10] Toward Antimony Selenide Sensitized Solar Cells: Efficient Charge Photogeneration at spiro-OMeTAD/Sb2Se3/Metal Oxide Heterojunctions
    Guijarro, Nestor
    Lutz, Thierry
    Lana-Villarreal, Teresa
    O'Mahony, Flannan
    Gomez, Roberto
    Haque, Saif A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (10): : 1351 - 1356