Space-Object Active Control Mode Inference Using Light Curve Inversion

被引:2
|
作者
Coder, Ryan D. [1 ]
Holzinger, Marcus J. [1 ]
Jah, Moriba K. [2 ]
机构
[1] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Univ Texas Austin, Cockrell Sch Engn, Austin, TX 78712 USA
关键词
ATTITUDE ESTIMATION; DESIGN;
D O I
10.2514/1.G002224
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Several candidate methods for classifying an agile space-object active control mode are tested using simulated light curve data and a Rao-Blackwellized particle filter. The first measure to discriminate the space-object control mode is a measurement dissimilarity metric, defined as the time integral of the error between the estimated target space-object sensor boresight and the line-of-sight vector to each hypothesized subject. The second measure quantifies the "pointing quality" using the multivariate Gaussian mixture model analog to the Mahalanobis distance, which is computed using the estimated multivariate body angular velocity distributions. It is shown how additional information from the space-object shape model can be combined with radiometric first principles to establish a tracking error threshold between the target space object and the hypothesized subject. Finally, the body angular velocity estimates are used to compute the mass-specific rotational angular momentum and mass-specific rotational kinetic-energy analogs. These analogs are coupled with statistical inference techniques to classify the active control modes of agile space objects.
引用
收藏
页码:88 / 100
页数:13
相关论文
共 50 条
  • [31] Depth Control of AUV Using Sliding Mode Active Disturbance Rejection Control
    Zhang, Yani
    Deng, Heng
    Li, Yanzhe
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (IEEE ICARM), 2018, : 300 - 305
  • [32] Attitude motion classification of resident space objects using light curve spectral analysis
    Isoletta, G.
    Opromolla, R.
    Fasano, G.
    ADVANCES IN SPACE RESEARCH, 2025, 75 (01) : 1077 - 1095
  • [33] A transfer learning approach to space debris classification using observational light curve data
    Allworth, James
    Windrim, Lloyd
    Bennett, James
    Bryson, Mitch
    ACTA ASTRONAUTICA, 2021, 181 : 301 - 315
  • [34] Active Vibration Control of Thin Plate Using Optimal Dynamic Inversion Technique
    Pradeesh, Vishnu L.
    Ali, Shaikh Faruque
    IFAC PAPERSONLINE, 2016, 49 (01): : 326 - 331
  • [35] Full attitude state reconstruction of tumbling space debris TOPEX/Poseidon via light-curve inversion with Quanta Photogrammetry
    Kucharski, Daniel
    Kirchner, Georg
    Jah, Moriba K.
    Bennett, James C.
    Koidl, Franz
    Steindorfer, Michael A.
    Wang, Peiyuan
    ACTA ASTRONAUTICA, 2021, 187 : 115 - 122
  • [36] Hybrid Active Wave/Mode Control of Space Prestressed Taut Cable Net Structures
    Ma, Xiao-Fei
    Li, Tuan-Jie
    Wang, Zuo-Wei
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2018, 10 (06)
  • [37] Trajectory Tracking Control of Unconstrained Object Using the SIRMs Dynamically Connected Fuzzy Inference Model
    Yi, Jianqiang
    Yubazaki, Naoyoshi
    Hirota, Kaoru
    Journal of Advanced Computational Intelligence and Intelligent Informatics, 2000, 4 (04) : 302 - 312
  • [38] Active vibration control of space flexible structure using stewart platform as active base
    Xu, Gao-Nan
    Huang, Hai
    Li, Wei-Peng
    Ma, Wei
    Yuhang Xuebao/Journal of Astronautics, 2015, 36 (04): : 438 - 445
  • [39] Sliding Mode Control for Mass Moment Aerospace Vehicles Using Dynamic Inversion Approach
    Zhang, Xiao-Yu
    Zhao, Yu-Xin
    Xu, De-Xin
    He, Kun-Peng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [40] A Reconfigurable Broadband Space-Mode Router using Multiplane Light Conversion
    Zhang, Yuanhang
    Wen, He
    Fontaine, Nicolas K.
    Chen, Haoshuo
    LiKamWa, Patrick L.
    Li, Guifang
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,