Space-Object Active Control Mode Inference Using Light Curve Inversion

被引:2
|
作者
Coder, Ryan D. [1 ]
Holzinger, Marcus J. [1 ]
Jah, Moriba K. [2 ]
机构
[1] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Univ Texas Austin, Cockrell Sch Engn, Austin, TX 78712 USA
关键词
ATTITUDE ESTIMATION; DESIGN;
D O I
10.2514/1.G002224
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Several candidate methods for classifying an agile space-object active control mode are tested using simulated light curve data and a Rao-Blackwellized particle filter. The first measure to discriminate the space-object control mode is a measurement dissimilarity metric, defined as the time integral of the error between the estimated target space-object sensor boresight and the line-of-sight vector to each hypothesized subject. The second measure quantifies the "pointing quality" using the multivariate Gaussian mixture model analog to the Mahalanobis distance, which is computed using the estimated multivariate body angular velocity distributions. It is shown how additional information from the space-object shape model can be combined with radiometric first principles to establish a tracking error threshold between the target space object and the hypothesized subject. Finally, the body angular velocity estimates are used to compute the mass-specific rotational angular momentum and mass-specific rotational kinetic-energy analogs. These analogs are coupled with statistical inference techniques to classify the active control modes of agile space objects.
引用
收藏
页码:88 / 100
页数:13
相关论文
共 50 条
  • [1] Progress of light curve inversion technology for resident space object characteristics
    Wang Y.
    Du X.
    Fan C.
    Kexue Tongbao/Chinese Science Bulletin, 2017, 62 (15): : 1578 - 1590
  • [2] Space-Object Shape Inversion via Adaptive Hamiltonian Markov Chain Monte Carlo
    Linares, Richard
    Crassidis, John L.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2018, 41 (01) : 47 - 58
  • [3] Space-object identification using phase-diverse speckle
    Seldin, JH
    Reiley, MF
    Paxman, RG
    Stribling, BE
    Ellerbroek, BL
    Johnston, DC
    IMAGE RECONSTRUCTION AND RESTORATION II, 1997, 3170 : 2 - 15
  • [4] Modeling Birth in a Space-Object CPHD Filter Using the Probabilistic Admissible Region
    Jones, Brandon A.
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 162 - 169
  • [5] Space Object Shape Characterization and Tracking Using Light Curve and Angles Data
    Linares, Richard
    Jah, Moriba K.
    Crassidis, John L.
    Nebelecky, Christopher K.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2014, 37 (01) : 13 - 25
  • [6] CALCULATION OF SPACE-OBJECT REFLECTED INTENSITY USING SPATIALLY RESOLVED EARTH-RADIANCE MEASUREMENTS
    KLEM, BF
    CHAMBERS, RW
    FLETCHER, ET
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1975, 65 (10) : 1174 - 1174
  • [7] LEO Object's Light-Curve Acquisition System and Their Inversion for Attitude Reconstruction
    Piergentili, Fabrizio
    Zarcone, Gaetano
    Parisi, Leonardo
    Mariani, Lorenzo
    Hossein, Shariar Hadji
    Santoni, Fabio
    AEROSPACE, 2021, 8 (01) : 1 - 18
  • [8] Glint removal for post-processing of ground-based space-object characterization imaging using RASL
    Bos, Jeremy P.
    Edel, Zachary
    Packard, Corey
    Valenzuela, John
    2016 IEEE AEROSPACE CONFERENCE, 2016,
  • [9] Object-Centric Scene Representations Using Active Inference
    Van de Maele, Toon
    Verbelen, Tim
    Mazzaglia, Pietro
    Ferraro, Stefano
    Dhoedt, Bart
    NEURAL COMPUTATION, 2024, 36 (04) : 677 - 704
  • [10] Inferring Active Control Mode of the Hubble Space Telescope Using Unresolved Imagery
    Coder, Ryan D.
    Wetterer, Charles J.
    Hamada, Kris M.
    Holzinger, Marcus J.
    Jah, Moriba K.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2018, 41 (01) : 164 - 170