A novel α-L-Rhamnosidase renders efficient and clean production of icaritin

被引:19
作者
Cheng, Leiyu [1 ]
Zhang, Han [1 ,2 ]
Cui, Haiyang [3 ]
Cheng, Jinmei [4 ]
Wang, Wenya [1 ]
Wei, Bin [1 ]
Liu, Fang [1 ]
Liang, Hao [1 ]
Shen, Xiaolin [1 ]
Yuan, Qipeng [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Life Sci & Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, 15 North Third Ring East Rd, Beijing 100029, Peoples R China
[3] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[4] Nantong Univ, Inst Reprod Med, Sch Med, Nantong 226001, Peoples R China
基金
中国国家自然科学基金;
关键词
Icaritin; Enzyme mining; alpha-L-Rhamnosidase; Enzymatic catalysis; PROTEIN STRUCTURES; EPIMEDIN C; CARCINOMA; WEB;
D O I
10.1016/j.jclepro.2022.130903
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Icaritin is a clinically effective and safe drug candidate for treating various cancers; however, the efficient and clean production remains challenging. Herein, a novel alpha-L-rhamnosidase (Rhase-I) was discovered from Talaromyces stollii CLY-6. Comprehensive studies showed that the Rhase-I can efficiently cleave both the outer and inner rhamnosidic bonds of epimedin C with the highest hydrolytic activity ever reported towards the rhamnosidic linkage between rhamnose and aglycone (13.52 U/mg and 179.67 mM(-1 )s(-1) against icariin). Remarkably, the highest icaritin productivity 93.16 g/L/h/g of Rhase-I was achieved by applying Rhase-I together with a glucosidase (Bglsk) into an optimized two-step catalysis process. This enzymatic technology allows icaritin production to proceed under milder conditions (30-45 ?) with less environmental issues (no acid/base consumption), shorter duration (1 h), and higher production efficiency (93.16 g/L/h/g of Rhase-I), which offers a great opportunity for industrial clean icaritin production.
引用
收藏
页数:11
相关论文
共 56 条
  • [1] Mining for new enzymes
    Aharoni, Amir
    [J]. MICROBIAL BIOTECHNOLOGY, 2009, 2 (02): : 128 - 129
  • [2] DOCK 6: Impact of New Features and Current Docking Performance
    Allen, William J.
    Balius, Trent E.
    Mukherjee, Sudipto
    Brozell, Scott R.
    Moustakas, Demetri T.
    Lang, P. Therese
    Case, David A.
    Kuntz, Irwin D.
    Rizzo, Robert C.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (15) : 1132 - 1156
  • [3] The β-glucosidase secreted by Talaromyces amestolkiae under carbon starvation: a versatile catalyst for biofuel production from plant and algal biomass
    Antonio Mendez-Liter, Juan
    Isabel de Eugenio, Laura
    Prieto, Alicia
    Jesus Martinez, Maria
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [4] SignalP 5.0 improves signal peptide predictions using deep neural networks
    Armenteros, Jose Juan Almagro
    Tsirigos, Konstantinos D.
    Sonderby, Casper Kaae
    Petersen, Thomas Nordahl
    Winther, Ole
    Brunak, Soren
    von Heijne, Gunnar
    Nielsen, Henrik
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (04) : 420 - +
  • [5] Accurate prediction of protein structures and interactions using a three-track neural network
    Baek, Minkyung
    DiMaio, Frank
    Anishchenko, Ivan
    Dauparas, Justas
    Ovchinnikov, Sergey
    Lee, Gyu Rie
    Wang, Jue
    Cong, Qian
    Kinch, Lisa N.
    Schaeffer, R. Dustin
    Millan, Claudia
    Park, Hahnbeom
    Adams, Carson
    Glassman, Caleb R.
    DeGiovanni, Andy
    Pereira, Jose H.
    Rodrigues, Andria V.
    van Dijk, Alberdina A.
    Ebrecht, Ana C.
    Opperman, Diederik J.
    Sagmeister, Theo
    Buhlheller, Christoph
    Pavkov-Keller, Tea
    Rathinaswamy, Manoj K.
    Dalwadi, Udit
    Yip, Calvin K.
    Burke, John E.
    Garcia, K. Christopher
    Grishin, Nick V.
    Adams, Paul D.
    Read, Randy J.
    Baker, David
    [J]. SCIENCE, 2021, 373 (6557) : 871 - +
  • [6] The Growing Impact of Catalysis in the Pharmaceutical Industry
    Busacca, Carl A.
    Fandrick, Daniel R.
    Song, Jinhua J.
    Senanayake, Chris H.
    [J]. ADVANCED SYNTHESIS & CATALYSIS, 2011, 353 (11-12) : 1825 - 1864
  • [7] Cheng LY, 2021, GREEN CHEM, V23, P5896, DOI [10.1039/D0GC04152A, 10.1039/d0gc04152a]
  • [8] Efficient production of the anti-aging drug Cycloastragenol: insight from two Glycosidases by enzyme mining
    Cheng, Leiyu
    Zhang, Han
    Cui, Haiyang
    Wang, Wenya
    Yuan, Qipeng
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (23) : 9991 - 10004
  • [9] Enzymatic Bioconversion of Cycloastragenol-6-O-β-D-glucoside into Cycloastragenol by a Novel Recombinant β-Glucosidase from Phycicoccus sp. Soi1748
    Cheng, Leiyu
    Zhang, Han
    Liang, Hao
    Sun, Xinxiao
    Shen, Xiaolin
    Wang, Jia
    Wang, Wenya
    Yuan, Qipeng
    Ri, Hyon-Il
    Kim, Tae-Mun
    Kang, Myong-Su
    Linhardt, Robert J.
    [J]. PROCESS BIOCHEMISTRY, 2020, 90 : 81 - 88
  • [10] Cleland W W, 1979, Methods Enzymol, V63, P103