Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system

被引:6
|
作者
Xu, Congmin [1 ,2 ]
Yang, Junkai [3 ]
Kosters, Astrid [3 ]
Babcock, Benjamin R. [3 ]
Qiu, Peng [1 ,2 ]
Ghosn, Eliver E. B. [3 ,4 ]
机构
[1] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30332 USA
[3] Emory Univ, Lowance Ctr Human Immunol, Dept Med, Div Immunol,Sch Med, Atlanta, GA 30322 USA
[4] Emory Univ, Emory Vaccine Ctr, Yerkes Natl Primate Res Ctr,Sch Med, Atlanta, GA 30322 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
MEMORY B; NK CELLS; RNA-SEQ; SUBSET; DIFFERENTIATION; TRANSCRIPTOME; IDENTIFICATION; GENE; AID;
D O I
10.1016/j.isci.2022.105123
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell transcriptomics enables the definition of diverse human immune cell types acrossmultiple tissues and disease contexts. Further deeper biological understanding requires comprehensive integration of multiple single-cell omics (transcriptomic, proteomic, and cell-receptor repertoire). To improve the identification of diverse cell types and the accuracy of cell-type classification in multi-omics single-cell datasets, we developed SuPERR, a novel analysis workflow to increase the resolution and accuracy of clustering and allow for the discovery of previously hidden cell subsets. In addition, SuPERR accurately removes cell doublets and preventswidespread cell-type misclassification by incorporating information from cell-surface proteins and immunoglobulin transcript counts. This approach uniquely improves the identification of heterogeneous cell types and states in the human immune system, including rare subsets of antibody-secreting cells in the bonemarrow.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Integration Analysis of Single-Cell Multi-Omics Reveals Prostate Cancer Heterogeneity
    Bian, Xiaojie
    Wang, Wenfeng
    Abudurexiti, Mierxiati
    Zhang, Xingming
    Ma, Weiwei
    Shi, Guohai
    Du, Leilei
    Xu, Midie
    Wang, Xin
    Tan, Cong
    Sun, Hui
    He, Xiadi
    Zhang, Chenyue
    Zhu, Yao
    Zhang, Min
    Ye, Dingwei
    Wang, Jianhua
    ADVANCED SCIENCE, 2024, 11 (18)
  • [2] scMoresDB: A comprehensive database of single-cell multi-omics data for human respiratory system
    Chen, Kang
    Han, Yutong
    Wang, Yanni
    Zhou, Dingli
    Wu, Fanjie
    Cai, Wenhao
    Zheng, Shikang
    Xiao, Qinyuan
    Zhang, Haiyue
    Li, Weizhong
    ISCIENCE, 2024, 27 (04)
  • [3] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [4] Decoding the human prenatal immune system with single-cell multi-omics
    Haniffa, Muzlifah
    Maartens, Aidan
    Winheim, Elena
    Jardine, Laura
    NATURE REVIEWS IMMUNOLOGY, 2024, : 285 - 297
  • [5] Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
    Liu, Longqi
    Liu, Chuanyu
    Quintero, Andres
    Wu, Liang
    Yuan, Yue
    Wang, Mingyue
    Cheng, Mengnan
    Leng, Lizhi
    Xu, Liqin
    Dong, Guoyi
    Li, Rui
    Liu, Yang
    Wei, Xiaoyu
    Xu, Jiangshan
    Chen, Xiaowei
    Lu, Haorong
    Chen, Dongsheng
    Wang, Quanlei
    Zhou, Qing
    Lin, Xinxin
    Li, Guibo
    Liu, Shiping
    Wang, Qi
    Wang, Hongru
    Fink, J. Lynn
    Gao, Zhengliang
    Liu, Xin
    Hou, Yong
    Zhu, Shida
    Yang, Huanming
    Ye, Yunming
    Lin, Ge
    Chen, Fang
    Herrmann, Carl
    Eils, Roland
    Shang, Zhouchun
    Xu, Xun
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
    Longqi Liu
    Chuanyu Liu
    Andrés Quintero
    Liang Wu
    Yue Yuan
    Mingyue Wang
    Mengnan Cheng
    Lizhi Leng
    Liqin Xu
    Guoyi Dong
    Rui Li
    Yang Liu
    Xiaoyu Wei
    Jiangshan Xu
    Xiaowei Chen
    Haorong Lu
    Dongsheng Chen
    Quanlei Wang
    Qing Zhou
    Xinxin Lin
    Guibo Li
    Shiping Liu
    Qi Wang
    Hongru Wang
    J. Lynn Fink
    Zhengliang Gao
    Xin Liu
    Yong Hou
    Shida Zhu
    Huanming Yang
    Yunming Ye
    Ge Lin
    Fang Chen
    Carl Herrmann
    Roland Eils
    Zhouchun Shang
    Xun Xu
    Nature Communications, 10
  • [7] Paired single-cell multi-omics data integration with Mowgli
    Huizing, Geert-Jan
    Deutschmann, Ina Maria
    Peyre, Gabriel
    Cantini, Laura
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] Paired single-cell multi-omics data integration with Mowgli
    Geert-Jan Huizing
    Ina Maria Deutschmann
    Gabriel Peyré
    Laura Cantini
    Nature Communications, 14
  • [9] Spatial integration of multi-omics single-cell data with SIMO
    Yang, Penghui
    Jin, Kaiyu
    Yao, Yue
    Jin, Lijun
    Shao, Xin
    Li, Chengyu
    Lu, Xiaoyan
    Fan, Xiaohui
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [10] Multi-omics integration in the age of million single-cell data
    Miao, Zhen
    Humphreys, Benjamin D.
    McMahon, Andrew P.
    Kim, Junhyong
    NATURE REVIEWS NEPHROLOGY, 2021, 17 (11) : 710 - 724