Engineering a stable future for DNA-origami as a biomaterial

被引:116
|
作者
Bila, Hale [1 ]
Kurisinkal, Eva E. [1 ]
Bastings, Maartje M. C. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Engn STI, IBI, Inst Mat IMX,PBL, MXC 340,Stn 12, CH-1015 Lausanne, Switzerland
关键词
ANTISENSE OLIGONUCLEOTIDES; IN-VIVO; NANOSTRUCTURES; STABILITY; NANOPARTICLES; DEGRADATION; EXONUCLEASE; POLYMER; NANOMATERIALS; ENCAPSULATION;
D O I
10.1039/c8bm01249k
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
DNA as a biomaterial has evoked great interest as a potential platform for therapeutics and diagnostics and as hydrogel scaffolds due to the relative ease of programming its robust and uniform shape, site-specific functionality and controlled responsive behavior. However, for a stable self-assembled product, a relatively high cation concentration is required to prevent denaturation. Physiological and cell-culture conditions do not match these concentrations and present additional nucleases that cause a serious threat to the integrity of DNA-based materials. For the translation of this promising technology towards bioengineering challenges, stability needs to be guaranteed. Over the past years, various methods have been developed addressing the stability-related weaknesses of DNA-origami. This mini-review explains the common stability issues and compares the stabilization strategies recently developed. We present a detailed overview of each method in order to ease the selection process on which method to use for future users of DNA-origami as a biomaterial.
引用
收藏
页码:532 / 541
页数:10
相关论文
共 50 条
  • [1] DNA-origami technique for olympic gels
    Pickett, G. T.
    EUROPHYSICS LETTERS, 2006, 76 (04): : 616 - 622
  • [2] Giant assembly of DNA-origami slats
    Lin Tang
    Nature Methods, 2023, 20 : 176 - 176
  • [3] Giant assembly of DNA-origami slats
    Tang, Lin
    NATURE METHODS, 2023, 20 (02) : 176 - 176
  • [4] DNA-Origami Enabled Distance-Dependent Sensing
    van Dongen, Jeanne E.
    Eijkel, Jan C. T.
    Segerink, Loes, I
    2022 IEEE SENSORS, 2022,
  • [5] Crystalline Two-Dimensional DNA-Origami Arrays
    Liu, Wenyan
    Zhong, Hong
    Wang, Risheng
    Seeman, Nadrian C.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (01) : 264 - 267
  • [6] Switchable DNA-origami nanostructures that respond to their environment and their applications
    Daljit Singh J.K.
    Luu M.T.
    Abbas A.
    Wickham S.F.J.
    Biophysical Reviews, 2018, 10 (5) : 1283 - 1293
  • [7] A Facile Method for Preparation of Tailored Scaffolds for DNA-Origami
    Erkelenz, Michael
    Bauer, Dennis M.
    Meyer, Rebecca
    Gatsogiannis, Christos
    Raunser, Stefan
    Sacca, Barbara
    Niemeyer, Christof M.
    SMALL, 2014, 10 (01) : 73 - 77
  • [8] A Revertible, Autonomous, Self-Assembled DNA-Origami Nanoactuator
    Marini, Monica
    Piantanida, Luca
    Musetti, Rita
    Bek, Alpan
    Dong, Mingdong
    Besenbacher, Flemming
    Lazzarino, Marco
    Firrao, Giuseppe
    NANO LETTERS, 2011, 11 (12) : 5449 - 5454
  • [9] Polymer tube nanoreactors via DNA-origami templated synthesis
    Tokura, Yu
    Harvey, Sean
    Xu, Xuemei
    Chen, Chaojian
    Morsbach, Svenja
    Wunderlich, Katrin
    Fytas, George
    Wu, Yuzhou
    Ng, David Y. W.
    Weil, Tanja
    CHEMICAL COMMUNICATIONS, 2018, 54 (22) : 2808 - 2811
  • [10] Purification of DNA-origami nanostructures by rate-zonal centrifugation
    Lin, Chenxiang
    Perrault, Steven D.
    Kwak, Minseok
    Graf, Franziska
    Shih, William M.
    NUCLEIC ACIDS RESEARCH, 2013, 41 (02)