Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers

被引:65
作者
Jana, P. [1 ]
Fierro, V. [1 ]
Pizzi, A. [2 ,3 ]
Celzard, A. [1 ]
机构
[1] UMR Univ Lorraine, CNRS 7198, ENSTIB, Inst Jean Lamour, F-88026 Epinal, France
[2] EA Univ Lorraine 4370, LERMAB, ENSTIB, F-88026 Epinal, France
[3] King Abdulaziz Univ, Dept Phys, Jeddah 21413, Saudi Arabia
关键词
Tannin; Graphite filler; Composite carbon foams; Thermal conductivity; Mechanical properties; PHASE-CHANGE MATERIALS; LATENT-HEAT STORAGE; ENERGY-STORAGE; PROCESSING PARAMETERS; HIGH-STRENGTH; TEMPERATURE; ENHANCEMENT; IRRADIATION;
D O I
10.1016/j.matdes.2015.06.057
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbonaceous porous matrices were prepared from a tannin-based resin by physical foaming, having improved thermal properties by addition of various kinds and various amounts of graphite fillers. The resultant composite carbon foams presented much higher thermal conductivity, making them suitable for hosting phase-change materials with the aim of using them in seasonal storage applications. These materials were investigated in terms of porous structure, thermal and mechanical properties. It was shown that, unlike what was a priori expected, smaller particles were far more suitable for getting conductive, strong and porous matrices. The smaller were the particles, the better were the results. These findings were explained and justified, making such biomass-based composite carbon foams interesting and cheap candidates for thermal storage applications. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:635 / 643
页数:9
相关论文
共 59 条
[1]   KNO3/NaNO3 - Graphite materials for thermal energy storage at high temperature: Part I. - Elaboration methods and thermal properties [J].
Acem, Zoubir ;
Lopez, Jerome ;
Del Barrio, Elena Palomo .
APPLIED THERMAL ENGINEERING, 2010, 30 (13) :1580-1585
[2]   Kinetic study of the acid hydrolysis of sugar cane bagasse [J].
Aguilar, R ;
Ramírez, JA ;
Garrote, G ;
Vázquez, M .
JOURNAL OF FOOD ENGINEERING, 2002, 55 (04) :309-318
[3]   Thermal conductivity of high-temperature multicomponent materials with phase change [J].
Aktay, K. S. do Couto ;
Tamme, R. ;
Mueller-Steinhagen, H. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2008, 29 (02) :678-692
[4]   Processing of strong and highly conductive carbon foams as electrode [J].
Amini, Negar ;
Aguey-Zinsou, Kondo-Francois ;
Guo, Zheng-Xiao .
CARBON, 2011, 49 (12) :3857-3864
[5]  
[Anonymous], DISTOR DISS WORKSH E
[6]   The properties of foams and lattices [J].
Ashby, MF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1838) :15-30
[7]  
Bastick M., 1965, GROUPE FRANCAIS DE T, P208
[8]   Thermal conductivity of cellular carbon foams: flash method measurements and analysis. [J].
Bourret, F ;
Fort, C ;
Duffa, G .
REVUE GENERALE DE THERMIQUE, 1997, 36 (07) :510-519
[9]   Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties [J].
Cabeza, Luisa F. ;
Barreneche, Camila ;
Martorell, Ingrid ;
Miro, Laia ;
Sari-Bey, Sana ;
Fois, Magali ;
Paksoy, Halime O. ;
Sahan, Nurten ;
Weber, Robert ;
Constantinescu, Mariaella ;
Anghel, Elena Maria ;
Malikova, Marta ;
Krupa, Igor ;
Delgado, Monica ;
Dolado, Pablo ;
Furmanski, Piotr ;
Jaworski, Maciej ;
Haussmann, Thomas ;
Gschwander, Stefan ;
Fernandez, A. Ines .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 43 :1399-1414
[10]   Radiative properties of tannin-based, glasslike, carbon foams [J].
Celzard, A. ;
Tondi, G. ;
Lacroix, D. ;
Jeandel, G. ;
Monod, B. ;
Fierro, V. ;
Pizzi, A. .
CARBON, 2012, 50 (11) :4102-4113