Fabrication of normally-off GaN nanowire gate-all-around FET with top-down approach

被引:26
作者
Im, Ki-Sik [1 ,2 ]
Won, Chul-Ho [1 ]
Vodapally, Sindhuri [1 ]
Caulmilone, Raphael [3 ]
Cristoloveanu, Sorin [4 ]
Kim, Yong-Tae [5 ]
Lee, Jung-Hee [1 ]
机构
[1] Kyungpook Natl Univ, Sch Elect Engn, Daegu 702701, South Korea
[2] Kyungpook Natl Univ, Inst Semicond Fus Technol, Daegu 702701, South Korea
[3] SOITEC, F-38190 Bernin, France
[4] Minatec, Grenoble Polytech Inst, Inst Microelect Electromagnetism & Photon, F-38016 Grenoble, France
[5] Korea Inst Sci & Technol, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
PERFORMANCE; TRANSISTORS;
D O I
10.1063/1.4964268
中图分类号
O59 [应用物理学];
学科分类号
摘要
Lateral GaN nanowire gate-all-around transistor has been fabricated with top-down process and characterized. A triangle-shaped GaN nanowire with 56 nm width was implemented on the GaN-on-insulator (GaNOI) wafer by utilizing (i) buried oxide as sacrificial layer and (ii) anisotropic lateral wet etching of GaN in tetramethylammonium hydroxide solution. During subsequent GaN and AlGaN epitaxy of source/drain planar regions, no growth occurred on the nanowire, due to self-limiting growth property. Transmission electron microscopy and energy-dispersive X-ray spectroscopy elemental mapping reveal that the GaN nanowire consists of only Ga and N atoms. The transistor exhibits normally-off operation with the threshold voltage of 3.5V and promising performance: the maximum drain current of 0.11mA, the maximum transconductance of 0.04 mS, the record off-state leakage current of similar to 10(-13) A/mm, and a very high I-on/I-off ratio of 10(8). The proposed top-down device concept using the GaNOI wafer enables the fabrication of multiple parallel nanowires with positive threshold voltage and is advantageous compared with the bottom-up approach. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 36 条
[1]   MOSFETs Made From GaN Nanowires With Fully Conformal Cylindrical Gates [J].
Blanchard, Paul T. ;
Bertness, Kris A. ;
Harvey, Todd E. ;
Sanders, Aric W. ;
Sanford, Norman A. ;
George, Steven M. ;
Seghete, Dragos .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (03) :479-482
[2]   MESFETs Made From Individual GaN Nanowires [J].
Blanchard, Paul T. ;
Bertness, Kris A. ;
Harvey, Todd E. ;
Mansfield, Lorelle M. ;
Sanders, Aric W. ;
Sanford, Norman A. .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (06) :760-765
[3]   Fabrication and characterization of pre-aligned gallium nitride nanowire field-effect transistors [J].
Cha, HY ;
Wu, HQ ;
Chandrashekhar, M ;
Choi, YC ;
Chae, S ;
Koley, G ;
Spencer, MG .
NANOTECHNOLOGY, 2006, 17 (05) :1264-1271
[4]   WIDE BANDGAP COMPOUND SEMICONDUCTORS FOR SUPERIOR HIGH-VOLTAGE UNIPOLAR POWER DEVICES [J].
CHOW, TP ;
TYAGI, R .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1994, 41 (08) :1481-1483
[5]  
Colinge J. P., 1990, International Electron Devices Meeting 1990. Technical Digest (Cat. No.90CH2865-4), P595, DOI 10.1109/IEDM.1990.237128
[6]   Nanometre-scale electronics with III-V compound semiconductors [J].
del Alamo, Jesus A. .
NATURE, 2011, 479 (7373) :317-323
[7]   Recent developments in surface studies of GaN and AlN [J].
Feenstra, RM ;
Dong, Y ;
Lee, CD ;
Northrup, JE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2005, 23 (03) :1174-1180
[8]   Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors [J].
Ferain, Isabelle ;
Colinge, Cynthia A. ;
Colinge, Jean-Pierre .
NATURE, 2011, 479 (7373) :310-316
[9]   A top-gate GaN nanowire metal-semiconductor field effect transistor with improved channel electrostatic control [J].
Gacevic, Z. ;
Lopez-Romero, D. ;
Mangas, T. Juan ;
Calleja, E. .
APPLIED PHYSICS LETTERS, 2016, 108 (03)
[10]   III-V-on-nothing metal-oxide-semiconductor field-effect transistors enabled by top-down nanowire release process: Experiment and simulation [J].
Gu, J. J. ;
Koybasi, O. ;
Wu, Y. Q. ;
Ye, P. D. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)