Stress-induced birefringence control in femtosecond laser glass welding

被引:10
作者
Gstalter, M. [1 ,2 ,3 ]
Chabrol, G. [2 ,4 ]
Bahouka, A. [1 ]
Serreau, L. [5 ]
Heitz, J-L. [5 ]
Taupier, G. [3 ]
Dorkenoo, K-D. [3 ]
Rehspringer, J-L. [3 ]
Lecler, S. [2 ]
机构
[1] Inst Carnot MICA, IREPA LASER, Parc Innovat, Illkirch Graffenstaden, France
[2] Univ Strasbourg, CNRS, ICube Lab, Strasbourg, France
[3] CNRS, IPCMS Lab, Strasbourg, France
[4] ECAM Strasbourg Europe, Espace Europeen Entreprise, Schiltigheim, France
[5] CRITT Mat, Schiltigheim, France
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2017年 / 123卷 / 11期
关键词
Femtosecond laser pulses; Glass; Micro-welding; Residual stress; Photoelasticimetry; TRANSPARENT MATERIALS; PULSES; STRENGTH;
D O I
10.1007/s00339-017-1324-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Glass welding by femtosecond laser pulses causes microscopic structural modifications, affecting the refractive index due to residual stress. Locally induced bire-fringence is studied by photoelasticimetry using a polarized light microscope. The study is performed on borosilicate thin glass plates using an industrial femtosecond laser generating 300 fs pulses at 500 kHz, with a 100 mm focusing length F-theta lens allowing fast welding. For low-energy deposition, the principal birefringence axes are determined to be homogenous along the seam and perpendicular and parallel to the laser scanning direction. Tensile stress is induced in the laser scanning direction by the welding seams. The induced birefringence is determined to be equivalent for in-volume irradiated track and welding seams. An inhomogeneity of the birefringence within the seam is observed for the first time at high-energy deposition. The distribution of the birefringence can be controlled with the laser scanning patterns. The amount of residual stress is measured by compensating the local birefringence. The birefringence Delta n is estimated at 2.4 x 10(-4), corresponding to a residual stress amount around 59 MPa. The influence of the welding geometry is also illustrated.
引用
收藏
页数:6
相关论文
共 19 条
[1]   STRESS-OPTIC COEFFICIENT OF GE-AS-SE CHALCOGENIDE GLASSES [J].
ANDERSON, PC ;
VARSHNEYA, AK .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1994, 168 (1-2) :125-131
[2]   Stress in femtosecond-laser-written waveguides in fused silica [J].
Bhardwaj, VR ;
Corkum, PB ;
Rayner, DM ;
Hnatovsky, C ;
Simova, E ;
Taylor, RS .
OPTICS LETTERS, 2004, 29 (12) :1312-1314
[3]   Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength [J].
Cvecek, K. ;
Miyamoto, I. ;
Strauss, J. ;
Wolf, M. ;
Frick, T. ;
Schmidt, M. .
APPLIED OPTICS, 2011, 50 (13) :1941-1944
[4]  
Dai Y, 2005, CHINESE PHYS LETT, V22, P2626, DOI 10.1088/0256-307X/22/10/047
[5]   Fundamentals of Femtosecond Laser Modification of Bulk Dielectrics [J].
Eaton, Shane M. ;
Cerullo, Giulio ;
Osellame, Roberto .
FEMTOSECOND LASER MICROMACHING: PHOTONIC AND MICROFLUIDIC DEVICES IN TRANSPARENT MATERIALS, 2012, 123 :3-18
[6]   Reinforcing a Direct Bond between Optical Materials by Filamentation Based Femtosecond Laser Welding [J].
Helie, David ;
Lacroix, Fabrice ;
Vallee, Real .
JOURNAL OF LASER MICRO NANOENGINEERING, 2012, 7 (03) :284-292
[7]   The Internal Tensile Strength of a Borosilicate Glass Determined from Laser Shock Experiments and Computational Analysis [J].
Holmquist, Timothy J. ;
Wereszczak, Andrew A. .
INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2014, 5 (04) :345-352
[8]  
Hülsenberg D, 2008, SPRINGER SER MATER S, V87, P263
[9]   Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibers [J].
Lorenc, D. ;
Aranyosiova, M. ;
Buczynski, R. ;
Stepien, R. ;
Bugar, I. ;
Vincze, A. ;
Velic, D. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 93 (2-3) :531-538
[10]   Digital photoelasticity of glass: A comprehensive review [J].
Ramesh, K. ;
Ramakrishnan, Vivek .
OPTICS AND LASERS IN ENGINEERING, 2016, 87 :59-74