Materials for in-vessel components

被引:36
作者
Pintsuk, Gerald [1 ]
Aiello, Giaocomo [2 ]
Dudarev, Sergei L. [3 ]
Gorley, Michael [3 ]
Henry, Jean [4 ]
Richou, Marianne [5 ]
Rieth, Michael [6 ]
Terentyev, D. [8 ]
Vila, Rafael [7 ]
机构
[1] Forschungszentrum Julich, Partner Trilateral Euregio Cluster TEC, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[2] EUROfus Consortium, Programme Management Unit, D-85748 Garching, Germany
[3] UK Atom Energy Author, Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England
[4] Univ Paris Saclay, Serv Rech Met Appl, CEA, F-91191 Gif Sur Yvette, France
[5] IRFM, CEA, F-13108 St Paul Les Durance, France
[6] Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany
[7] SCK CEN, Belgian Nucl Res Ctr, B-2400 Mol, Belgium
[8] Euratom CIEMAT Fus Assoc, Ave Complutense 22, Madrid 28040, Spain
关键词
RAFM-steels; Tungsten and copper based composites; DEMO design criteria; Neutron irradiation; THERMAL BARRIER MATERIALS; HIGH-HEAT-FLUX; BREEDING BLANKET; DEMO; COMPOSITES; TEMPERATURE; ALLOYS; STEEL; DESIGN; MODELS;
D O I
10.1016/j.fusengdes.2021.112994
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The EUROfusion materials research program for DEMO in-vessel components aligns with the European Fusion Roadmap and comprises the characterization and qualification of the in-vessel baseline materials EUROFER97, CuCrZr and tungsten, advanced structural and high heat flux materials developed for risk mitigation, as well as optical and dielectric functional materials. In support of the future engineering design activities, the focus is primarily to assemble qualified data to supply the design process and generate material property handbooks, material assessment reports, DEMO design criteria and material design limits for DEMO thermal, mechanical and environmental conditions.& nbsp;Highlights are provided on advanced material development including (a) steels optimized towards lower or higher operational windows, (b) heat sink materials (copper alloys or composites) and (c) tungsten based plasma facing materials. The rationale for the down-selection of material choices is also presented. The latter is strongly linked with the results of neutron irradiation campaigns for baseline material characterization (structural, high heat flux and functional materials) and screening of advanced materials.& nbsp;Finally, an outlook on future material development activities to be undertaken during the upcoming Concept Design Phase for DEMO will be provided, which highly depends on an effective interface between materials' development and components' design driven by a common technology readiness assessment of the different systems.
引用
收藏
页数:21
相关论文
共 97 条
  • [1] Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium
    Alexander, R.
    Marinica, M. -C.
    Proville, L.
    Willaime, F.
    Arakawa, K.
    Gilbert, M. R.
    Dudarev, S. L.
    [J]. PHYSICAL REVIEW B, 2016, 94 (02)
  • [2] [Anonymous], 2020, Radiation-Induced Damage in Austenitic Structural Steels Used in Nuclear Reactors, Vsecond, P57
  • [3] Processing of complex near-net-shaped tungsten parts by PIM
    Antusch, Steffen
    Hoffmann, Jan
    Klein, Alexander
    Gunn, James P.
    Rieth, Michael
    Weingaertner, Tobias
    [J]. NUCLEAR MATERIALS AND ENERGY, 2018, 16 : 71 - 75
  • [4] A NEA review on innovative structural materials solutions, including advanced manufacturing processes for nuclear applications based on technology readiness assessment
    Balbaud, F.
    Cabet, C.
    Cornet, S.
    Dai, Y.
    Gan, J.
    Mayoral, M. Hernandez
    Hernandez, R.
    Jianu, A.
    Malerba, L.
    Maloy, S. A.
    Marrow, J.
    Ohtsuka, S.
    Okubo, N.
    Pouchon, M. A.
    Puype, A.
    Stergar, E.
    Serrano, M.
    Terentyev, D.
    Wang, Y. G.
    Weisenburger, A.
    [J]. NUCLEAR MATERIALS AND ENERGY, 2021, 27
  • [5] Chromium enrichment on the habit plane of dislocation loops in ion-irradiated high-purity Fe-Cr alloys
    Bhattacharya, A.
    Meslin, E.
    Henry, J.
    Pareige, C.
    Decamps, B.
    Genevois, C.
    Brimbal, D.
    Barbu, A.
    [J]. ACTA MATERIALIA, 2014, 78 : 394 - 403
  • [6] Bhattacharya A., 2018, ORNLSPR2018882, DOI DOI 10.2172/1471901
  • [7] Bhattacharya A., COMPREHENSIVE NUCL M, V1, P406
  • [8] Trends in vacancy distribution and hardness of high temperature neutron irradiated single crystal tungsten
    Bonny, G.
    Konstantinovic, M. J.
    Bakaeva, A.
    Yin, C.
    Castin, N.
    Mergia, K.
    Chatzikos, V
    Dellis, S.
    Khvan, T.
    Bakaev, A.
    Dubinko, A.
    Terentyev, D.
    [J]. ACTA MATERIALIA, 2020, 198 : 1 - 9
  • [9] Fissile core and Tritium-Breeding Blanket: structural materials and their requirements
    Boutard, Jean-Louis
    Alamo, Ana
    Lindau, Rainer
    Rieth, Michael
    [J]. COMPTES RENDUS PHYSIQUE, 2008, 9 (3-4) : 287 - 302
  • [10] Self-passivating tungsten alloys of the system W-Cr-Y for high temperature applications
    Calvo, A.
    Schlueter, K.
    Tejado, E.
    Pintsuk, G.
    Ordas, N.
    Iturriza, I.
    Neu, R.
    Pastor, J. Y.
    Garcia-Rosales, C.
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2018, 73 : 29 - 37