Trivial multiple zeta values in Tate algebras

被引:1
作者
Gezmis, O. [1 ]
Pellarin, F. [2 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 30042, Taiwan
[2] Inst Camille Jordan, UMR 5208, Site St Etienne,23 Rue Dr P Michelon, F-42023 St Etienne, France
关键词
MULTIZETA VALUES; L-SERIES; SHUFFLE;
D O I
10.1093/imrn/rnab104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study trivial multiple zeta values in Tate algebras. These are particular examples of the multiple zeta values in Tate algebras introduced by the second author. If the number of variables involved is "not large" in a way that is made precise in the paper, we can endow the set of trivial multiple zeta values with a structure of module over a non-commutative polynomial ring with coefficients in the rational fraction field over F-q. We determine the structure of this module in terms of generators and we show how in many cases, this is sufficient for the detection of linear relations between Thakur's multiple zeta values.
引用
收藏
页码:14319 / 14383
页数:65
相关论文
共 30 条
  • [1] Multizeta Values for Fq[t], Their Period Interpretation, and Relations between Them
    Anderson, Greg W.
    Thakur, Dinesh S.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (11) : 2038 - 2055
  • [2] Log-algebraicity of twisted A-harmonic series and special values of L-series in characteristic p
    Anderson, GW
    [J]. JOURNAL OF NUMBER THEORY, 1996, 60 (01) : 165 - 209
  • [3] Arithmetic of positive characteristic L-series values in Tate algebras
    Angles, B.
    Pellarin, F.
    Ribeiro, F. Tavares
    Demeslay, F.
    [J]. COMPOSITIO MATHEMATICA, 2016, 152 (01) : 1 - 61
  • [4] ANDERSON-STARK UNITS FOR Fq[θ]
    Angles, Bruno
    Pellarin, Federico
    Ribeiro, Floric Tavares
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) : 1603 - 1627
  • [5] Stark units in positive characteristic
    Angles, Bruno
    Tuan Ngo Dac
    Ribeiro, Floric Tavares
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 115 : 763 - 812
  • [6] Mixed Tate motives over Z
    Brown, Francis
    [J]. ANNALS OF MATHEMATICS, 2012, 175 (02) : 949 - 976
  • [7] On a conjecture of Furusho over function fields
    Chang, Chieh-Yu
    Mishiba, Yoshinori
    [J]. INVENTIONES MATHEMATICAE, 2021, 223 (01) : 49 - 102
  • [8] On Multiple Polylogarithms in Characteristic : -Adic Vanishing Versus -Adic Eulerianness
    Chang, Chieh-Yu
    Mishiba, Yoshinori
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (03) : 923 - 947
  • [9] Linear independence of monomials of multizeta values in positive characteristic
    Chang, Chieh-Yu
    [J]. COMPOSITIO MATHEMATICA, 2014, 150 (11) : 1789 - 1808
  • [10] ANDERSON-THAKUR POLYNOMIALS AND MULTIZETA VALUES IN POSITIVE CHARACTERISTIC
    Chen, Huei-Jeng
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (06) : 1135 - 1152