PARRONDO'S DYNAMIC PARADOX FOR THE STABILITY OF NON-HYPERBOLIC FIXED POINTS

被引:3
作者
Cima, Anna [1 ]
Gasull, Armengol [1 ]
Manosa, Victor [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Fac Ciencies, Bellaterra 08193, Spain
[2] Univ Politecn Cataluna, Dept Matemat, Colom 1, Terrassa 08222, Spain
关键词
Periodic discrete dynamical systems; non-hyperbolic points; local and global asymptotic stability; Parrondo's dynamic paradox; NORMAL FORMS; DIFFERENCE-EQUATIONS; POPULATION BIOLOGY; PERIODIC-ORBITS; MAPS; ATTRACTORS; DISCRETE; SYSTEMS; MODELS;
D O I
10.3934/dcds.2018038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for periodic non-autonomous discrete dynamical systems, even when a common fixed point for each of the autonomous associated dynamical systems is repeller, this fixed point can became a local attractor for the whole system, giving rise to a Parrondo's dynamic type paradox.
引用
收藏
页码:889 / 904
页数:16
相关论文
共 31 条
[1]   A Global Attractor in Some Discrete Contest Competition Models with Delay under the Effect of Periodic Stocking [J].
AlSharawi, Ziyad .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[2]  
[Anonymous], 1999, INTRO DIFFERENCE EQU, DOI DOI 10.1007/978-1-4757-3110-1
[3]  
ARROWSMITH D. K., 1990, An Introduction to Dynamical Systems
[4]   Stable manifolds associated to fixed points with linear part equal to identity [J].
Baldomá, I ;
Fontich, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 197 (01) :45-72
[5]   On r-periodic orbits of k-periodic maps [J].
Beyn, Wolf-Juergen ;
Huels, Thorsten ;
Samtenschnieder, Malte-Christopher .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2008, 14 (08) :865-887
[6]  
Blondel V. D., 2004, UNSOLVED PROBLEMS MA, P304
[7]   Periodically forced Pielou's equation [J].
Camouzis, E. ;
Ladas, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) :117-127
[8]   Dynamic Parrondo's paradox [J].
Canovas, J. S. ;
Linero, A. ;
Peralta-Salas, D. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (02) :177-184
[9]   Normal forms for differentiable maps near a fixed point [J].
Chen, GT ;
Della Dora, J .
NUMERICAL ALGORITHMS, 1999, 22 (02) :213-230
[10]   NORMAL FORMS OF LOCAL DIFFEOMORPHISMS ON REAL LINE [J].
CHEN, KT .
DUKE MATHEMATICAL JOURNAL, 1968, 35 (03) :549-&