Modelling diameter distributions of Betula alba L. stands in northwest Spain with the two-parameter Weibull function

被引:39
作者
Gorgoso, J. J. [3 ]
Gonzalez, J. G. Alvarez [1 ]
Rojo, A. [1 ]
Grandas-Arias, J. A. [2 ]
机构
[1] Univ Santiago de Compostela, Dept Enxenaria Agroforesal, Escola Politecn Super, Lugo 27002, Spain
[2] Conselleria Medio Rural, Direcc Xeral Montes & Ind Forestais, Santiago De Compostela 15781, Spain
[3] Univ Oviedo, Escuela Univ Ingn Tecn, Dept Biol Organismos & Sistemas, Mieres 33600, Spain
来源
INVESTIGACION AGRARIA-SISTEMAS Y RECURSOS FORESTALES | 2007年 / 16卷 / 02期
关键词
diameter class model; two-parameter Weibull distribution; fitting methods; parameter modelling; PINUS-SYLVESTRIS; FOREST STANDS; PLANTATIONS; ESTIMATORS; PREDICTION; CATALONIA;
D O I
10.5424/srf/2007162-01002
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The diameter distributions of 125 permanent plots installed in birch dominated (Betula alba L.) stands in Galicia were modelled with the two-parameter Weibull distribution. Four different fitting methods were used: that based on percentiles of the distribution, non linear regression, maximum likelihood and the method of moments. The most accurate fit was obtained with the non linear regression (NLR) approach, considering the following statistics in the comparison: bias, mean absolute error (MAE), mean square error (MSE) and number of plots rejected by the Kolomogoroff-Smirnoff (KS) test. The scale parameter (b) and the shape parameter (c) obtained with the most accurate rnethod (non linear regression), were first modelled with simple linear models and then related to commonly measured prediction variables (quadratic mean diameter, dominant height and stand density) with the parameter prediction model (PPM). The parameters fitted with the method of moments were recovered with the parameter recovery model (PRM) from the first and the second moments of the distribution (mean diameter and variance, respectively). Results indicated that both methods were successful in predicting the diameter frequency distributions. The PRM was more accurate than the PPM method.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 43 条
[1]  
Alvarez-Gonzalez J. G, 1997, THESIS U POLITECNICA
[2]  
[Anonymous], 1989, Nonlinear Regression, DOI 10.1002/0471725315
[3]  
Assmann E., 1970, PRINCIPLES FOREST YI
[4]  
BAILEY RL, 1973, FOREST SCI, V19, P97
[5]  
BAILEY RL, 1982, SO34 USDA
[6]  
BORDERS BE, 1990, FOREST SCI, V36, P413
[7]  
BURK TE, 1984, FOREST SCI, V30, P329
[8]  
CAO QV, 1984, FOREST SCI, V30, P129
[9]  
Castilla Castellano G., 1992, Investigacion Agraria, Sistemas y Recursos Forestales, V1, P189
[10]  
Condes S., 1997, THESIS U POLITECNICA