Braided autoequivalences and quantum commutative bi-Galois objects

被引:13
作者
Zhu, Haixing [1 ]
Zhang, Yinhuo [2 ]
机构
[1] Nanjing Forest Univ, Sch Econ & Management, Nanjing 210037, Peoples R China
[2] Univ Hasselt, Dept WNI, B-3590 Diepenbeek, Belgium
关键词
WEAK HOPF-ALGEBRAS; CATEGORIES;
D O I
10.1016/j.jpaa.2015.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (H, R) be a quasitriangular weak Hopf algebra over a field k. We show that there is a braided monoidal isomorphism between the Yetter-Drinfeld module category (HYD)-Y-H over H and the category of comodules over some braided Hopf algebra H-R in the category M-H. Based on this isomorphism, we prove that every braided bi-Galois object A over the braided Hopf algebra H-R defines a braided autoequivalence of the category (HYD)-Y-H if and only if A is quantum commutative. In case H is semisimple over an algebraically closed field, i.e. the fusion case, then every braided autoequivalence of (HYD)-Y-H trivializable on M-H is determined by such a quantum commutative Galois object. The quantum commutative Galois objects in M-H form a group measuring the Brauer group of (H, R) as studied in [21] in the Hopf algebra case. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:4144 / 4167
页数:24
相关论文
共 23 条
  • [1] [Anonymous], 1995, Grad. Texts Math.
  • [2] Weak Hopf algebras I.: Integral theory and C*-structure
    Böhm, G
    Nill, F
    Szlachányi, K
    [J]. JOURNAL OF ALGEBRA, 1999, 221 (02) : 385 - 438
  • [3] Caenepeel S., 2005, ANN U FERRARA SEZ 7, V51, P69
  • [4] Davydov A., ARXIV12020061V1
  • [5] Dello J., ARXIV1102903
  • [6] On braided fusion categories I
    Drinfeld, Vladimir
    Gelaki, Shlomo
    Nikshych, Dmitri
    Ostrik, Victor
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (01): : 1 - 119
  • [7] On fusion categories
    Etingof, P
    Nikshych, D
    Ostrik, V
    [J]. ANNALS OF MATHEMATICS, 2005, 162 (02) : 581 - 642
  • [8] Fusion categories and homotopy theory
    Etingof, Pavel
    Nikshych, Dmitri
    Ostrik, Victor
    [J]. QUANTUM TOPOLOGY, 2010, 1 (03) : 209 - 273
  • [9] Face algebras and unitarity of SU(N)L-TQFT
    Hayashi, T
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (01) : 211 - 247
  • [10] Braided groups and quantum groupoids
    Liu, G. H.
    Zhu, H. X.
    [J]. ACTA MATHEMATICA HUNGARICA, 2012, 135 (04) : 383 - 399