Elevated CO2 impact on growth and lipid of marine cyanobacterium Phormidium valderianum BDU 20041- towards microalgal carbon sequestration

被引:21
作者
Dineshbabu, Gnanasekaran [1 ]
Uma, Vaithyalingam Shanmugasundaram [2 ]
Mathimani, Thangavel [3 ]
Prabaharan, Dharmar [4 ]
Uma, Lakshmanan [4 ]
机构
[1] Indian Inst Technol Guwahati, Dept Biosci & Bioengn, Bioproc Dev Lab, Gauhati, Assam, India
[2] Indira Gandhi Ctr Atom Res, Environm Safety Div, Kalpakkam, Tamil Nadu, India
[3] Natl Inst Technol Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
[4] Bharathidasan Univ, Natl Facil Marine Cyanobacteria, DBT, Govt India, Tiruchirappalli 620024, Tamil Nadu, India
来源
BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY | 2020年 / 25卷
关键词
CO2; fixation; sequestration; Cyanobacteria; Flue gas; Lipid; Fatty acids; FRESH-WATER MICROALGAE; FATTY-ACID CONTENT; FLUE-GAS; CHLORELLA SP; BIODIESEL PRODUCTION; BIOMASS PRODUCTION; DIOXIDE; ACCUMULATION; CARBOXYLASE; CULTIVATION;
D O I
10.1016/j.bcab.2020.101606
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The growth of marine cyanobacteria at elevated CO2 levels is one of the feasible means to bioremediate the greenhouse gases. The present paper describes a marine filamentous cyanobacterium Phormidium valderianum BDU 20041 that can grow at elevated CO2 levels (15%), simulated and actual flue gas. Compared to ambient air and other tested CO2 concentrations, 3% CO2 showed higher biomass productivity, growth rate and carbon fixation rate. The organism was able to tolerate 15% CO2 and the simulated flue gas conditions making it a strong candidate for microalgal carbon capture. The lipid content of P. valderianum BDU 20041 at 15% CO2, simulated and actual flue gas conditions was higher than the ambient air. The conditions tested, i.e. 15% CO2, simulated and real flue gas show that this organism could be a potential entity in curbing carbon emission and a plausible biodiesel feedstock through hydrothermal liquefaction.
引用
收藏
页数:7
相关论文
共 49 条
  • [1] Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels
    Abdelaziz, Ahmed E. M.
    Leite, Gustavo B.
    Hallenbeck, Patrick C.
    [J]. ENVIRONMENTAL TECHNOLOGY, 2013, 34 (13-14) : 1807 - 1836
  • [2] Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock
    Ahmad, A. L.
    Yasin, N. H. Mat
    Derek, C. J. C.
    Lim, J. K.
    [J]. ENVIRONMENTAL TECHNOLOGY, 2014, 35 (17) : 2244 - 2253
  • [3] [Anonymous], THESIS
  • [4] Mixed microalgae consortia growth under higher concentration of CO2 from unfiltered coal fired flue gas: Fatty acid profiling and biodiesel production
    Aslam, Ambreen
    Thomas-Hall, Skye R.
    Manzoor, Maleeha
    Jabeen, Faiza
    Iqbal, Munawar
    Zaman, Qamar Uz
    Schenk, Peer M.
    Tahir, M. Asif
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2018, 179 : 126 - 133
  • [5] Mechanism of CO2 acquisition in an acid-tolerant Chlamydomonas
    Balkos, Konstantine D.
    Colman, Brian
    [J]. PLANT CELL AND ENVIRONMENT, 2007, 30 (06) : 745 - 752
  • [6] Beychok M., 2012, FOSSIL FUEL COMBUSTI
  • [7] BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
  • [8] Third generation biofuels via direct cellulose fermentation
    Carere, Carlo R.
    Sparling, Richard
    Cicek, Nazim
    Levin, David B.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2008, 9 (07): : 1342 - 1360
  • [9] Carbon and Nitrogen Fixation by Anabaena fertilissima under Elevated CO2 and Temperature
    Chinnasamy, Senthil
    Ramakrishnan, Balasubramanian
    Bhatnagar, Ashish
    Goyal, Santosh K.
    Das, Keshav C.
    [J]. JOURNAL OF FRESHWATER ECOLOGY, 2009, 24 (04) : 587 - 596
  • [10] Reduction of CO2 by a high-density culture of Chlorella sp in a semicontinuous photobioreactor
    Chiu, Sheng-Yi
    Kao, Chien-Ya
    Chen, Chiun-Hsun
    Kuan, Tang-Ching
    Ong, Seow-Chin
    Lin, Chih-Sheng
    [J]. BIORESOURCE TECHNOLOGY, 2008, 99 (09) : 3389 - 3396