A nonlocal diffusion problem with a sharp free boundary

被引:21
作者
Cortazar, Carmen [1 ]
Quiros, Fernando [2 ]
Wolanski, Noemi [3 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Matemat, Santiago, Chile
[2] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[3] Univ Buenos Aires, Dept Matemat, FCEyN, Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, IMAS, RA-1428 Buenos Aires, DF, Argentina
关键词
Nonlocal diffusion; free boundary problems; population dynamics; EQUATION;
D O I
10.4171/IFB/430
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and analyze a nonlocal free boundary problem which may be of interest to describe the spreading of populations in hostile environments. The rate of growth of the volume of the region occupied by the population is proportional to the rate at which the total population decreases. We prove existence and uniqueness for the problem posed on the line, on the half-line with constant Dirichlet data, and in the radial case in several dimensions. We also describe the asymptotic behaviour of both the solution and its free boundary.
引用
收藏
页码:441 / 462
页数:22
相关论文
共 12 条
[1]   Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal [J].
Bates, Peter W. ;
Zhao, Guangyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :428-440
[2]   PHASE TRANSITIONS WITH MIDRANGE INTERACTIONS: A NONLOCAL STEFAN MODEL [J].
Braendle, Cristina ;
Chasseigne, Emmanuel ;
Quiros, Fernando .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) :3071-3100
[3]   SPREADING SPEED REVISITED: ANALYSIS OF A FREE BOUNDARY MODEL [J].
Bunting, Gary ;
Du, Yihong ;
Krakowski, Krzysztof .
NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (04) :583-603
[4]   The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries [J].
Cao, Jia-Feng ;
Du, Yihong ;
Li, Fang ;
Li, Wan-Tong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (08) :2772-2814
[5]   Spatial effects in discrete generation population models [J].
Carrillo, C ;
Fife, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 50 (02) :161-188
[6]   Asymptotic behavior for nonlocal diffusion equations [J].
Chasseigne, Emmanuel ;
Chaves, Manuela ;
Rossi, Julio D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03) :271-291
[7]   A nonlocal diffusion equation whose solutions develop a free boundary [J].
Cortazar, C ;
Elgueta, M ;
Rossi, JD .
ANNALES HENRI POINCARE, 2005, 6 (02) :269-281
[8]   ASYMPTOTIC BEHAVIOR FOR A NONLOCAL DIFFUSION EQUATION ON THE HALF LINE [J].
Cortazar, Carmen ;
Elgueta, Manuel ;
Quiros, Fernando ;
Wolanski, Noemi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (04) :1391-1407
[9]  
Fife P, 2003, TRENDS IN NONLINEAR ANALYSIS, P153
[10]  
Meirmanov A., 1992, STEFAN PROBLEM