A stress/displacement Virtual Element method for plane elasticity problems

被引:85
作者
Artioli, E. [1 ]
de Miranda, S. [2 ]
Lovadina, C. [3 ,4 ]
Patruno, L. [2 ]
机构
[1] Univ Roma Tor Vergata, Dept Civil Engn & Comp Sci, Via Politecn 1, I-00133 Rome, Italy
[2] Univ Bologna, DICAM, Viale Risorgimento 2, I-40136 Bologna, Italy
[3] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[4] CNR, IMATI, Via Ferrata 1, I-27100 Pavia, Italy
关键词
Virtual element method; Hellinger-Reissner; Symmetric stress; Elasticity; Low order method; POLYGONAL FINITE-ELEMENTS; POLYHEDRAL MESHES; ELLIPTIC PROBLEMS; DIFFUSION-PROBLEMS; DIFFERENCE METHOD; ERROR; DISPLACEMENT;
D O I
10.1016/j.cma.2017.06.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The numerical approximation of 2D elasticity problems is considered, in the framework of the small strain theory and in connection with the mixed Hellinger-Reissner variational formulation. A low-order Virtual Element Method (VEM) with a priori symmetric stresses is proposed. Several numerical tests are provided, along with a rigorous stability and convergence analysis. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 174
页数:20
相关论文
共 45 条
  • [1] Andersen O., USE VIRTUAL ELEMENT
  • [2] [Anonymous], 2007, FINITE ELEMENTE
  • [3] [Anonymous], 2011, ABAQUS DOC
  • [4] [Anonymous], 1968, TRAVAUX RECHERCHES M
  • [5] Artioli E., 2017, COMPUT MECH
  • [6] A displacement-based finite element formulation for general polyhedra using harmonic shape functions
    Bishop, J. E.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (01) : 1 - 31
  • [7] Boffi D., 2013, SPRINGER SERIES COMP, V44
  • [8] ANALYSIS OF COMPATIBLE DISCRETE OPERATOR SCHEMES FOR ELLIPTIC PROBLEMS ON POLYHEDRAL MESHES
    Bonelle, Jerome
    Ern, Alexandre
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (02): : 553 - 581
  • [9] Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes
    Brezzi, F
    Lipnikov, K
    Shashkov, M
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) : 1872 - 1896
  • [10] BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS
    Brezzi, F.
    Falk, Richard S.
    Marini, L. Donatella
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04): : 1227 - 1240