A short note on band projections in partially ordered vector spaces

被引:3
作者
Glueck, Jochen
机构
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2019年 / 30卷 / 01期
关键词
Band projection; Order projection; Pre-Riesz space; Partially ordered vector space; Disjointness; DISJOINTNESS;
D O I
10.1016/j.indag.2018.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider an Archimedean partially ordered vector space X with generating cone (or, more generally, a pre-Riesz space X). Let P be a linear projection on X such that both P and its complementary projection I - P are positive; we prove that the range of P is a band. This shows that the well-known concept of band projections on vector lattices can, to a certain extent, be transferred to the framework of ordered vector spaces. (C) 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 14 条
  • [1] Gluck Jochen, PREPRINT
  • [2] Kalauch A., QUAEST MATH
  • [3] Disjointness preserving C0-semigroups and local operators on ordered Banach spaces
    Kalauch, Anke
    van Gaans, Onno
    Zhang, Feng
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (02): : 535 - 547
  • [4] Bands in partially ordered vector spaces with order unit
    Kalauch, Anke
    Lemmens, Bas
    van Gaans, Onno
    [J]. POSITIVITY, 2015, 19 (03) : 489 - 511
  • [5] Luxemburg W.A.J., 1971, N HOLLAND MATH LIB, V1
  • [6] Order closed ideals in pre-Riesz spaces and their relationship to bands
    Malinowski, Helena
    [J]. POSITIVITY, 2018, 22 (04) : 1039 - 1063
  • [7] Meyer-Nieberg P., 1991, Banach Lattices
  • [8] Schaefer H. H., 1974, Banach lattices and positive operators
  • [9] Serninorms on ordered vector spaces that extend to Riesz seminorms on larger Riesz spaces
    van Gaans, O
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (01): : 15 - 30
  • [10] van Gaans O, 2008, OPER MATRICES, V2, P177